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ABSTRACT
The measurement of stagnation temperature is important for tur-

bomachinery applications as it is used in the calculation of component
efficiency and engine specific fuel consumption. This paper examines
the use of polynomial variable projection to identify dimension re-
ducing subspaces for stagnation temperature probes. As an example
application we focus on a simplified Kiel probe geometry, but the pro-
posed data-centric approach could be readily applied to new datasets
with different geometries, boundary conditions and design objectives.

The design of Kiel probes is non-trivial, with a large design space,
complex flow physics, and competing design objectives. Two design
objectives are considered: (1) the stagnation pressure loss, to reduce
instrumentation losses; (2) the change in recovery ratio with respect
to Mach number, to reduce temperature measurement uncertainty.

Subspaces are obtained for the two design objectives, allowing
the influence of seven design parameters to be understood. The
entropy generation rate is used to provide physical insights into
loss mechanisms. The recovery ratio subspace indicates that for the
present probe there is an optimum vent-to-inlet area which minimises
the change in recovery ratio with respect to Mach number, and design
modifications that yield further small improvements are explored.

Finally, the uncertainty in recovery ratio due to manufacturing
variability is shown to be important. In comparison to global sen-
sitivity measures, the use of an active subspace is shown to provide
important information on what manufacturing tolerances are impor-
tant for specific designs. New designs can also be selected that are
insensitive to given manufacturing tolerances.

∗Address all correspondence to ascillitoe@turing.ac.uk

1 INTRODUCTION
Accurate and precise temperature measurements are vital for

advances in aerothermal technology. In engine tests, these values
are the output of elaborate measurement chains that originate at
temperature probes installed at various locations in an engine (see
Fig. 1). Millivolt scale perturbations are induced at the hot junction
of each probe, following which these signals traverse through a series
of filters, amplifiers, multiplexers and an analog-to-digital converter
before being finally converted into Kelvin on a computer (see page 79
in [1]). Throughout this chain, uncertainties are aggregated owing to
temporal averaging, spatial averaging, static calibration, cold junction
temperature measurement and the design of the temperature probe
itself. The latter can give rise to convection, conduction, radiation
and velocity errors, warranting further study into the probe and its
aerothermal environment.

FIGURE 1: Temperature measurement locations (circled in red) for
a typical 3-shaft turbofan engine and an archetypal turbine probe
arrangement. Based upon Ref. [2].

Prior to burrowing down this path, it will be useful to understand
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the wider impact of imprecise measurements in an engine. Bonham
et al. [3] state that for accurate turbomachinery efficiency mea-
surements to within +−1%, one requires uncertainties in stagnation
temperature to be within +−0.1%—a reflection of the challenging
aerothermal outlook. In their study on temperature measurements for
a turbine, Seshadri et al. [4] estimate that with aero-engine industry
representative uncertainties of+−2.4K at 68% percentile for stagnation
temperature, a +−1.2% uncertainty in efficiency can be expected.

FIGURE 2: The main sources of radiative, velocity and conductive
errors in a Kiel shrouded stagnation temperature probe.

A typical Kiel probe configuration used for temperature
measurements is shown in Figure 2. Thermocouple wires are
encased within a Kiel shroud [5], which acts to bring the flow to near
stagnation conditions, as well as to desensitise the measurements
to inflow angle. However, the low velocity over the thermocouple
wires reduce the convective heat transfer to them, causing the probe
to become sensitive to conductive (and radiative) heat transfer to the
surroundings. This conductive error can be abated by increasing the
flow through the bleed holes, but a velocity error then arises since the
velocity over the thermocouple is further from stagnation conditions
(see Ref. [1] for further details). Flow separation and other viscous
flow effects also lead to a loss of stagnation temperature.

Due to their size relative to surrounding blades, probes can also
have a significant influence on the flow they are trying to measure.
Luo [6] finds that leading edge probes have an important effect on
the loading of compressor blades. Meanwhile, Ng and Coull [7]
show that probes influence the boundary layer transition, as well as
the profile losses, across turbine blades.

Concurrently, with the continued drive for performance gains
in gas turbine engines, there is a clear need for more accurate and
less intrusive temperature probes. A number of modifications to
the standard Kiel probe have been proposed, such as dual shrouded
probes [3]. Ng and Coull [7] have explored how basic design features
of a standard Kiel probe, such as probe diameter and length, can
influence the probe’s performance.

More broadly, these efforts echo the objective of numerous
aerothermal design studies, where one is interested in understanding
which key parameters have a strong influence on reducing pressure
loss, increasing efficiency, or decreasing SFC, and why. Such a
sensitivity analysis seeks to rank all the design parameters based on
their importance, and interaction with other parameters, via metrics
ranging from local sensitivity indices such as gradients to more

global indices such as elementary effects [8], Sobol’ indices and the
related derivative- [9] and total-effects-based [10] variance measures.
Through the ranking obtained, one can confirm which subset of pa-
rameters are the primary drivers of aerothermal performance and thus
discard the remainder from further parametric studies. Unfortunately,
computing such metrics in the first place requires the execution
of a suitable design of experiment, which can be computationally
prohibitive with more design parameters. To tackle the curse of dimen-
sionality associated with such design of experiments, we deviate from
such subset-based strategies and adopt a subspace-based stratagem
of dimension reduction based on ridge approximations [11].

Ridge approximations and the closely related active subspaces
[12] constitute a class of computational heuristics and data-driven
algorithms for querying which linear combination of parameters are
important. They have seen use in a range of turbomachinery-based
design and aerothermal analysis studies, ranging from preliminary
mean-line design [13]; multi-point fan blade design [14]; design
space maps [15] and manufacturing assessments [16]. In this paper,
we leverage the insight afforded by ridge approximations to better
understand the design space of a Kiel shrouded probe. The approach
taken here is data-centric, in that it is applied a posteriori to a CFD
dataset. The same approach could be readily applied to new datasets
with different geometries, boundary conditions and design objectives.

The remainder of this paper is structured as follows: in Sec. 2
the design objectives considered in the paper are outlined. After
a presentation of the underlying methods used in Sec. 3, in Sec. 4
dimension reducing subspaces are computed and explored. An
example of how these subspaces assist in finding new probe
designs is then given in Sec. 5. Finally, in Sec. 6, the idea of using
dimension reducing subspaces to find designs that are insensitive to
manufacturing uncertainties is explored.

2 DESIGN OBJECTIVES
A number of design objectives are to be considered in this paper.

Firstly, Ubald et al. [2] found that over 50% of the stagnation pressure
losses observed at the exit to a linear turbine cascade were due to the
presence of leading edge temperature probes. It is important to reduce
this, hence the first quantity considered is the pressure loss coefficient

Yp=100
P0,in−P0,out

P0,in−Pout
(%), (1)

where P0,out and Pout are the stagnation and static pressure mass-
averaged across the outlet of the computational domain, and P0,in is
the inlet stagnation pressure. Since probes are subjected to a range
of Mach numbers in an engine, the average Yp across the set of
Mach numbers M = {0.3,0.4,0.5,0.6,0.7,0.8} is taken to give the
loss design objective, which we wish to minimise,

OYp =
1
6 ∑

M∈M
Yp(M). (2)

2 Copyright © 2020 Rolls-Royce plc



The second performance parameter to consider is the probe’s
recovery ratio. Due to the conduction and velocity errors mentioned in
Section 1, the temperature measured by the probe, Tm, is not equal to
the real stagnation temperature T0. The probe’s temperature recovery
properties must be known in order for the true temperature T0 to be
obtained. This can be in the form of the probe’s recovery ratio Rr=
Tm/T0, or its recovery factor R f =(Tm−T)/(T0−T) [17], where T
is the freeestream static temperature. Many practitioners (e.g. [7]) use
R f , since it better accounts for the changing dynamic head of the flow.
However, as noted by Smout [18]: “where the dynamic head is small,
the error in experimentally determined recovery factor can easily be
greater than the error that would occur if no recovery correction were
made to measured data”. For this reason, and for simplicity, many
studies (e.g. [19, 20]) use Rr, as is done in this paper. It would,
however, be straightforward to apply the same approach with R f .

The Mach number of the surrounding flow alters the convective
heat transfer coefficient to the thermocouple, as well as the
temperature gradient driving conduction. Therefore, the recovery
ratio is a function of Mach number, and Rr (or R f ) versus Mach
number curves like those in Figure 3a must be obtained during
probe calibration. When these curves are used for post-test recovery
error corrections, any uncertainty in Mach number will lead to an
uncertainty in Rr, and therefore in T0. To minimise this uncertainty,
the second design objective to be minimised is taken as the gradient
of recovery ratio with respect to Mach number.

ORr =

∣∣∣∣∂Rr(M)

∂M

∣∣∣∣ (3)

As the Rr curves for the probes explored in this paper were close to
linear (see Fig. 3a), the gradient was obtained by performing ordinary
least squares linear regression on Rr across the set M.

(a) (b)

FIGURE 3: (a) Recovery ratio versus Mach number curves and (b)
design objectives for all 128 probe designs explored in this paper.

As seen in Figure 3b, the worst probes explored in this
paper have values of up to ORr = 0.0079. For a Mach number
uncertainty of M +− 0.02, this would lead to uncertainty in Rr of
+−0.02×0.0079 =+−1.6×10−4, and a temperature uncertainty of
T0 +−0.016%. Although small, this uncertainty is not insignificant

if aiming for the T0+−0.1% uncertainty target given by Bonham et al.
[3]. Bonham et al. [19] reports a smaller measurement uncertainty of
M+−0.006, however M+−0.02 may be realistic if the pitot-static probe
used to measure M is located some distance from the temperature
probe, or if M is estimated by other means.

Bonham et al. [19] examines the temperature measurement error
due to flow unsteadiness. This arises when recovery ratio curves
obtained in a steady aerodynamic calibration facility are used to
correct measured temperatures in an unsteady flow. The probe with
the smallest unsteady error was found to be the one with the smallest
Rr versus Mach gradient. Since many turbomachinery flows are
unsteady, this further incentivises minimisation of the ORr objective.

Complex probe designs, such as the dual shrouded probe design
of Bonham et al. [3], have been proposed to minimise Mach number
sensitivity [3]. This paper will examine whether the same can be
achieved through judicious exploration of the design space for a more
simple single shrouded probe. As Figure 3b shows, the two design
objectives OYp and ORr are not strongly correlated. A multi-objective
optimisation could be performed to find designs which minimise both
design objectives at once. However, as this paper will demonstrate, in
addition to finding better designs, dimension reducing subspaces can
provide a more comprehensive understanding of the design space.

3 METHODS
The baseline geometry, and the seven design parameters which

parametrise it, are shown in Figure 4. The geometry studied here is a
real temperature probe used in engine tests, and has been investigated
in detail in Ref. [2]. The thermocouple is sheathed with Inconel
600, and the thermocouple wires are insulated with a layer of MgO.
The wires and the insulation are both modelled, with the material
properties of both the NiSil and NiCroSil wires being averaged to
enable the use of a symmetry plane to reduce computational costs.
The upper and lower extents of the design space are given by the
vectors xL and xU in Table 1.

TABLE 1: Lower xL and upper xU extents of the design space.
Parameters are given as delta’s from the baseline design, x0, since
the absolute dimensions are proprietary.

Design parameter xL x0 xU

1. Ellipsoidal hole (scale) 0.50 1.00 1.25

2. Move hole (translate) -0.3mm 0.0mm 0.0mm

3. Angle hole (translate inner) 0mm 0.0mm 1.0mm

4. Kiel leading edge (translate) -2.0mm 0.0mm 2.0mm

5. Kiel outer diameter (scale) 0.90 1.00 1.25

6. Kiel inner diameter (scale) 0.75 1.00 1.10

7. Bleed hole diameter (scale) 0.50 1.00 1.50
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θ

FIGURE 4: Cross-section of the probe design explored in this paper.
Material types are labelled within the inner box. The 7 design
parameters modified are shown in the outer region.

To sample the design space, N number of designs are drawn
uniformly between [xL, xU ] to obtain unique x̂ j design vectors
( j=1,...,N), each with d=7 elements (or rows) corresponding to the
number of design variables. There are numerous heuristics for draw-
ing these design of experiment (DOE) samples (see [14] for details);
in this paper, optimal Latin hypercube sampling (LHS) with N=128
chosen1. The selection of N=128 should be sufficient, since from
prior experience, N should be at least 4 to 5 times d (this is verified by
checking R2 scores for different N, similar to Sec. 4) . A full factorial
DOE, with 3 levels for each design parameter, would require 2,187 de-
sign samples, therefore the use of LHS offers a significant cost saving.

Next, for each sample

x j=
2x̂ j−

(
xU−xL

)
(xU−xL)

(4)

was computed. Equation 4 transforms all the dimensionalised
samples to lie between x j ∈ [−1,1]7. For each x j, a geometry can
be discretised using the mesh morphing procedure in Section 3.1.
Each case is then run through a computational fluid dynamics (CFD)
solver, described in Section 3.2, and the design objectives OYp and
ORr evaluated for each design.

3.1 Mesh morphing
Generating 128 CFD meshes from scratch would be pro-

hibitively time consuming. Instead, a baseline mesh is created, and
the 128 meshes are generated by morphing the baseline mesh. A
parallelised mesh morphing tool has been created [21] in C++ using
a Radial Basis Function (RBF) based morphing method similar to
that used by de Boer et al. [22]. For this method, an interpolation

1This can be replaced with Monte Carlo or other sampling heuristics with no
significant change in the results, provided that the sampling density is uniform.

function is used to define the nodal displacement based on the
weighted sum of a basis function φ :

s(z)=
M

∑
i=1

wiφ(
∣∣∣∣z−zki

∣∣∣∣) (5)

where zki is a vector of control points with pre-defined displacements,
M is the number of control points, and wi is a vector of the
interpolation weights. A number of options were considered for the
RBF kernel function, φ . The Wendland C0 function was selected
due to its compact support resulting in a sparse coefficient matrix
and significantly lower runtime.

Due to the sharp rise in the cost of the RBF method with
increasing evaluation points, the deformation of the 7 design
parameters was completed independently and successively to each
other, hence, each of the 128 meshes required the generation of 7
prior meshes. All of the meshes were generated on the Cambridge
CSD3 cluster with 320 cores (Each node has dual Intel® Xeon®

Gold 6142 for a total of 32 cores per node and 384GB of RAM),
taking a total of approximately 4,000 CPU hours.

(a) Baseline structured mesh

(b) A morphed mesh

FIGURE 5: Example of meshes generated for this study.

A quarter of the baseline probe is meshed, with symmetry planes
in the y and z directions. A baseline structured multi-block mesh was
generated, with ∼4 million nodes required to achieve satisfactory
mesh independence. The baseline mesh is shown in Figure 5a.
The solid regions are also meshed, with fully conformal interfaces
between all fluid/solid regions. Mesh refinement is performed at
the interfaces to ensure y+ < 1 in the fluid domain. An example
deformed mesh is shown in Figure 5b.
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3.2 CFD predictions

To obtain flow fields for each probe geometry we solve the 3D,
compressible, Reynolds-averaged Navier-Stokes (RANS) equations
on the aforementioned meshes using the ANSYS Fluent CFD solver.
The CFD simulations are fully coupled conjugate simulations, with
conductive heat transfer modelled in the solid regions. The wires and
their insulating material are discretised, but it is not feasible to model
the wires all the way to the reference junction. Instead, the stem and
its encompassing solid regions are extended≈11D (where D is the
probe diameter) downstream, in a similar manner to the approach
of Schneider [23] and Quickel [24]. The different materials that are
modelled in this study are labelled in Figure 4.

Simulations are run at 6 different Mach numbers (see Tab. 2),
leading to 768 CFD simulations in total. For each Mach number the
inlet stagnation temperature T0,in is adjusted so that the inlet static
temperature remains constant at 300k. The outlet static pressure was
fixed at Pout =101,325 Pa, with the inlet/outlet located 5D and 25D
upstream/downstream from the probe leading/trailing edges. The
probe is modelled as a probe in freestream, with the temperature of
the support, insulation and wires unconstrained at the domain outlet.
A significant amount of heat is still conducted away from the probe
since the flow downstream of the probe convects heat away from
the lengthened support. However, this simplification, and the lack of
radiative heat transfer in the simulations, mean that the velocity error
is expected to play a more dominant role compared to the real probe.

TABLE 2: Inlet boundary conditions.

M P0,in (Pa) T0,in (K)

0.3 107,850 305

0.4 113,136 310

0.5 120,196 315

0.6 129,241 322

0.7 140,553 329

0.8 154,459 338

Previous work by one of the authors [25] studied the perfor-
mance of a number of RANS models for the simulation of a dual
shrouded probe in freestream. The Realizable k− ε model with
streamline curvature and Kato-Launder stagnation corrections was
found to perform best, and this setup is chosen for the present study.
The inflow k and ε are set to give an inflow turbulence intensity of
0.5% and a viscosity ratio of 5. All simulations were completed on the
Cambridge CSD3 cluster. Each case was run using 16-24 dual Intel®

Xeon® Gold 6142 compute cores (depending on license availability)
for a total compute time of approximately 20,000 CPU hours.

3.3 Ridge approximation and dimension reduction
As before, let x ∈Rd (with d = 7) represent a sample within

our design space χ and within this space let f (x) represent our
aerothermal functional, which could be either OYp(x) or ORr(x). Our
goal is to construct the approximation

f (x)≈g
(
UUUT x

)
, (6)

where UUU∈Rd×m is an orthogonal matrix with m<<d, implying that
g is a polynomial function of m variables—ideally m=1 or m=2
to facilitate easy visualization. In addition to m, the polynomial
order of g, given by k, must also be chosen. The matrix UUU isolates
m linear combinations of all the design parameters that are deemed
sufficient for approximating f with g. Techniques for determining the
unknowns UUU and g in literature [26, 27] are rooted around solutions
to the non-linear least squares problem

minimize
UUU,ααα

∥∥ f (x)−gααα

(
UUUT x

)∥∥2
2, (7)

where ααα represents unknown model variables associated with g.
In practice, to solve this optimization problem, we assemble the N
input-output data pairs

XXX=

xT
1
...

xT
N

, f=

 f1
...
fN

, (8)

and replace f (x) in (7) with the evaluations f. Algorithms for solving
this problem include [26], where the authors propose an alternating
optimization problem where g is the posterior mean of a Gaussian
process and ααα are the hyperparameters associated with a pre-defined
kernel function. Here, we adopt the polynomial variable projection
approach of Hokanson and Constantine [27] where g is a polynomial
and ααα are its coefficients. Both UUU and ααα are obtained by recasting
(7) as a separable non-linear least squares problem using the idea
of variable projection (see Golub and Pereyra [28]), resulting in a
solution via a Gauss-Newton optimization. This code can be found
in the open-source Effective-Quadratures2 python package [29]. The
non-dimensionalised data for the probe studies and the underlying
scripts can be found at github.com/ascillitoe/probe-subspaces.

4 OBTAINING DIMENSION REDUCING SUBSPACES
From the N number of CFD evaluations we obtain values for

the design objectives O j
Yp

and O j
Rr

for each design x j. The design
vectors x j lie in a 7 dimensional hypercube

χ⊂ [−1,1]7 where x j∈χ for j=1,...,N, (9)

2www.effective-quadratures.org
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(a) Loss objective, OYp (b) Recovery objective, ORr

FIGURE 6: R2 scores versus reduced dimensions m and polynomial
order k, with selected combinations highlighted in orange.

which makes exploration of the design space difficult. To reduce the
dimensionality of the problem, we wish to use the method of variable
projection (Sec. 3.3) to obtain dimension reducing subspaces for the
two design objectives. To elaborate on Equation 6, we wish to approx-
imate each design objective with a reduced dimension polynomial,

OYp(x j)≈g
(
UUUT

Y x j
)

(10)

ORr(x j)≈h
(
UUUT

Rx j
)
, (11)

where UUUT
Y ∈R7 and UUUT

R ∈R7×2. But first, suitable values for the
polynomial order k and reduced dimension m must be found. For
ease of interpretation and visualisation it is desirable to work with
small values of m, while small values of k (i.e. k ≤ 3) prevent
over-fitting. Variable projection is applied with different values of
k and m, and R2 scores are obtained by comparing the polynomial
approximation g

(
UUUT x j

)
to the true CFD results OYp .

Figure 6 shows the R2 scores for all combinations of k and m
tested. For OYp , increasing m gives a slightly higher R2 score, but R2=
0.992 with m=1 and k=1 is already satisfactory. For ORr , slightly
higher R2 scores are obtained with m>2. However, this would be at
the expense of interpretability, therefore in this instance we stick with
a 2 dimensional (m=2) subspace. Increasing the polynomial order to
k=3 yields an appreciable increase in the R2 score in this case. The
final choice of m=2 and k=3 gives an R2 score of 0.941 for ORr .

4.1 The pressure loss subspace
The high R2 score of the dimension reducing subspace for the

loss design objective indicates that OYP admits low dimensional struc-
ture. In other words, minimal information has been lost by reducing
the dimension, and we can construct a sufficient summary plot to sum-
marise the behaviour of OYp in our reduced dimensional space. In Fig-
ure 7, the true OYp values are plotted against the inputs, x j, projected
onto the loss subspace i.e. uY =UUUT

Y x. It is clear that the actual CFD
evaluations (circular markers) lie close to the polynomial approxima-
tion g

(
UUUT

Y x j
)
, which we have chosen to be linear (k=1) in this case.

The orange circle in Figure 7 highlights the baseline design. It is
apparent that designs with lower loss exist for lower uY . Examining

FIGURE 7: Sufficient summary plot for the loss design objective
OYp , plotted on its active subspace.

UUUY in Equation 12, which projects the 7 dimensional x onto the
1 dimensional subspace, tells us how the designs change as the 1
dimensional space is traversed.

UUUY =[0.05,0.01, −0.12︸ ︷︷ ︸
Angle hole

,−0.02, 0.98︸︷︷︸
Kiel�outer

,0.02, 0.17︸︷︷︸
Hole�

] (12)

The 7 elements in UUUY are the weights corresponding to the 7 design
variables in Table 1. The weight for Kiel outer diameter is close to
1, indicating that the parameter changes almost from its minimum
to maximum value as uY goes from -1 to 1. Figure 7 tells us that OYp

increases linearly as this is done. The next two largest weights in
UUUY are the bleed hole angle and diameter. The hole angle parameter
is seen to decrease slightly as uY is increased, while the hole diameter
increases. This suggests that higher angled bleed holes3 decrease
loss, while larger hole diameters increase it. To further elucidate
these findings, the sources of loss are examined by thinking of loss
in terms of an increase in entropy [30]. The total entropy generation
rate per unit volume is the sum of the entropy generation due to heat
transfer Ṡht , and the entropy generation due to viscous effects Ṡv. The
heat transfer term is an order of magnitude smaller than the viscous
term in this case, so we focus on the viscous term

Ṡv=
1
T
(τi j :∇u), (13)

where τi j is the combined viscous and turbulent stress tensor, and
T is the static temperature. The viscous term is calculated from
CFD results for two designs at either end of the OYp subspace, and
contours are presented in Figure 8.

The high loss design exhibits large amounts of viscous entropy
generation in three key regions, labelled in Figure 8a:

3As shown in Figure 4, the hole angle parameter is defined as a translation of the
inner bleed hole opening to the fore, so decreasing this parameter leads to less angled
bleed holes.

6 Copyright © 2020 Rolls-Royce plc



(a) Design with UUUT
Y x=+1

(b) Design with UUUT
Y x=−1

FIGURE 8: Contours of viscous entropy generation rate, from CFD
for M=0.8, for designs at either end of the loss subspace.

1. Leading edge shear layer - The flow separates at the leading
edge of the shroud, and a separated shear layer convects
downstream. As expected [30], the viscous friction in the free
shear layer generates significant entropy.

2. Bleed hole interior: A stagnation point on one of the inner
bleed hole corners, and a separated shear layer emanating from
the other, generate noticeable amounts of entropy.

3. Bleed hole exit - The flow ejected from the bleed holes is
representative of a jet in crossflow. Studies have shown that such
jets interact with the mean flow and generate kidney-vortices
[31]. Recent large eddy simulations [2] of a temperature probe
have highlighted the parasitic loss caused by these vortices.

In comparison, the low loss design in Figure 8b has lower entropy
generation rates in these three key areas. Ng and Coull [7] suggest
that a similar probe behaves like a bluff body, with decreasing probe
diameter leading to a smaller frontal area and less bluff body drag.
The present comparison appears to agree here, with the reduced outer
diameter of the low loss design (Fig. 8b) leading to a weaker shear
layer originating from the leading edge. Adding a bleed hole angle
has reduced the severity of the stagnation and separation regions
within the bleed hole interior, leading to lower entropy generation
here. Additionally, the sweptback hole reduces the angle between
the exiting jet and the freestream, leading to less pronounced jet in
crossflow effects and less entropy generation here.

4.2 The recovery ratio gradient subspace
Exploring the subspace for the recovery ratio design objective

is more involved, since we have chosen a cubic polynomial with 2

reduced dimensions in this case. Figure 9 is the sufficient summary
plot for this design objective. The two horizontal axes are the
physical coordinates x, projected onto the two reduced subspace
dimensions uR,1 and uR,2, where

uuuR=UUUT
Rx

=[uR,1 uR,2].
(14)

Generally, the markers denoting the true ORr values collapse closely
onto the coloured surface in Figure 9, which is the polynomial
approximation for ORr . The objective ORr displays a mostly quadratic
behaviour in the uR,1 direction, with designs that have significantly
lower recovery ratio sensitivity to Mach number (low ORr) existing
around uR,1=0.4.

FIGURE 9: Sufficient summary plot for the recovery ratio design
objective ORr , plotted on its active subspace.

The ORr subspace is viewed in a top-down fashion in Figure 10a.
As already observed, ORr displays quadratic behaviour in the
direction of the vector va =(1.0,0.0). A physical interpretation of
how designs vary along this vector is given by the elements of the
vector product vauuuR, shown in Figure 11a. The elements can be
directly compared since we have non-dimensionalised the input data
such that x j ∈ [−1,1]7. It is primarily the bleed hole diameter and
hole ellipse which increase as we move along the vector va, with the
Kiel inner diameter decreasing slightly.

The bleed hole diameter and Kiel inner diameter are important
since they control the probe’s vent area and inlet area. The ratio of
vent-to-inlet area (Avent/Ainlet) controls the Mach number over the
thermocouple junction [17]:

M j=M∞

Avent

Ainlet

(
1+

γ−1
2

M2
∞

) −1
γ−1

. (15)

Markowski and Moffatt [17] advise that in order to maximise recovery
ratio, M j must be sufficiently small (M j≤0.25) to minimise velocity
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(a) (b)

FIGURE 10: The recovery ratio subspace with: (a) contours of the
polynomial approximation of ORr and markers showing the discrete
design points; (b) a Cartesian grid drawn across the convex hull of
the projection of the design points in the subspace.

(a)

(b)

FIGURE 11: Weights of the vectors (a) vauuuR and (b) vbuuuR.

errors (see Sec. 1). However, if it is too small the convective heat
transfer will be too low and conductive errors will become more
significant. Equation 15 is rearranged to give the area ratio required
for a given M j, and is plotted in Figure 12a. It is apparent that the area
ratio required for a given M j strongly depends on M∞, and thus the
optimal area ratio required to maximise recovery also depends on M∞.

Along the vector va the bleed hole diameter increases while
the Kiel inner diameter decreases, meaning the ratio Avent/Ainlet is
increasing. As ORr displays quadratic behaviour along the vector,
there must also be an optimum value of Avent/Ainlet which minimises
ORr , the gradient of Rr with respect to Mach number. Recovery ratio
curves for the designs A, B and C that lie on va in Figure 10 are shown
in Figure 12b. All three designs have similar values of Rr at Mach
0.3, but Rr falls off quicker with Mach number for designs A and C.

Mach number contours (for M∞=0.8) and Avent/Ainlet ratios for

(a) (b)

FIGURE 12: Effect of freestream Mach number on: (a) Vent-to-inlet
area required to obtain a Mach number M j over the thermocouple;
(b) Recovery ratio for designs A, B and C labelled in Figure 10.

(a) Design A (b) Design B

(c) Design C (d) Design D

FIGURE 13: Mach number contours for designs A, B, C and D
labelled in Figure 10, from CFD for M=0.8.

the three designs are shown in Figure 13. The low recovery ratio’s
at M∞=0.8 for designs A (Fig. 13a) and C (Fig. 13c) are explained
by the overly low and high Mach numbers over the thermocouple.
Figure 12a suggests that for Avent/Ainlet =0.389 (design (c)) a value
of M j ≈ 0.23 is expected at M∞ = 0.8. However, close to the ther-
mocouple the Mach number is clearly higher than this (Fig. 13c), due
to the thermocouple’s proximity to the bleed hole and the hole angle.
Design (b) (Fig. 13b), which is close to the minimum ORr value along
vector va in Figure 10a, has an area ratio of Avent/Ainlet =0.296. This
is close to the value used by others, such as the PRT probe tested
by Bonham et al. [20] which has Avent/Ainlet =0.27.

Additionally, a slight decrease in ORr can be obtained by moving
in the direction of the vector vb = (0.15,−0.99). The elements of
vbuuuR are visualised in Figure 11b. Moving along this vector primarily
involves an increase in the Kiel inner diameter, while simultaneously
decreasing the Kiel outer diameter. The effect of this is to reduce
the thickness of the shroud, as observed by comparing design D
(Fig. 13d) to design C (Fig. 13c).
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Clearly, the area ratio Avent/Ainlet is significant in determining
the recovery ratio, and the recovery ratio’s sensitivity to Mach number.
However, other design parameters, such as the bleed hole angle and
Kiel outer diameter have also been demonstrated to be important.
The “optimal” value of Avent/Ainlet seen here should not be taken
as a design recommendation, since as discussed in Section 3.2, the
velocity errors may be overly dominant in the simplified example
considered in this paper.

4.3 Considering multiple objectives
So far the two design objectives have been considered in isolation.

To properly understand the design space, it is important to consider
the two objectives together. This can be done by projecting values
of OYp onto the ORr subspace. To begin, a Cartesian grid is drawn
within the convex hull (or perimeter) of design points that populate
the ORr subspace4, as shown in Figure 10b. We wish to find the loss
at each point within this grid, using the polynomial approximation for
OYp . However, there are infinitely many 7 dimensional coordinates
x j that can be projected onto a given coordinate uuuR, j in the dimension
reducing subspace. We use the hit and run algorithm from [32], also
available in Effective Quadratures [33], to generate a large number
(ND=1000) of designs at each point in the Cartesian grid.

The ND designs at each uuuR, j are expected to have approximately
equal values of ORr , but there is no guarantee they will have similar
values of OYp . Figure 14a shows that the standard deviation of the
OYp values can be up to 18% of the mean OYp towards the centre of
the ORr subspace. As we are interested in designs with low loss, we
take the minimum OYp value to plot at each point in Figure 14b.

(a) (b)

FIGURE 14: The (a) variance and (b) minimum of the loss objective
projected onto the recovery ratio objective’s subspace.

The red circle in Figure 14b denotes the baseline design. The
ORr subspace confirms that the baseline design is already relatively
good, since it is in the valley of ORr (refer to the coloured markers for
ORr values). However, slightly lower values of ORr can be achieved
by moving roughly in the direction of vb (recall Fig. 10a) towards
point 2 in Figure 14b.

4The convex hull is computed using the Qhull library from qhull.org .

5 FINDING NEW DESIGNS
The reduced 2 dimensional domain of the ORr subspace can be

written in set notation as

U=
{

u :u=UUUT x,−1≤x≤1
}
. (16)

Here U is a convex polytope residing in 2 dimensional space, the
vertices of which are a subset of the 128 vertices of a 7 dimensional hy-
percube (χ from Eq. 9) projected onto a 2 dimensional plane. This can
be thought of as a silhouette of the 7 dimensional design space on the
2 dimensional subspace. Such projections are called zonotopes. Their
vertices can be computed using the search algorithm in [34] (or [33]).

The zonotope of the ORr subspace is plotted as the black line
in Figure 14. This represents the limits of the design space, and it is
evident that the design space sampled so far (the markers in Fig. 14b)
doesn’t encompass these limits. To explore whether improved
designs can be found closer to these limits, new designs are generated
at the x’s labelled 3, 4 and 5 in Figure 15. These uuuR coordinates
are selected since they lie in the direction of decreasing ORr . For
completeness, a number of new designs are also generated at points
lying within the existing design space. At each point, 5 new designs
are randomly generated using the hit and run algorithm, meshes are
created, and CFD simulations are run. The five designs at each uuuR
coordinate have different x vectors, but the same uuuR vector. Hence,
if the polynomial approximation OYp≈g

(
UUUT x j

)
is accurate, the five

designs at each uuuR vector would be expected to have approximately
equal ORr values. On the other hand, each set of five designs is not
guaranteed to have the same uY and OYp value.

(a) OYp (b) ORr

FIGURE 15: Design objectives from CFD evaluations of the new
designs. Numbers 1-6 correspond to points 1-6 in Fig. 14.

The resulting values of OYp and ORr for each new design are
displayed in Figure 15. It is encouraging that ORr is similar for the
five designs at each point. Lower values of ORr are attainable by
venturing outside of the original sample space, i.e. from point 2 to
3. Moving to the left from point 3 to point 4 moves to a lower OYp

region, while moving further to point 5 leads to even lower OYp at
the cost of considerably higher ORr .

The second design at point 4 is chosen as the new design due
to its low values of both design objectives. This design is compared
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(a) Baseline design (b) New design

FIGURE 16: Mach number contours of baseline and new designs
from CFD at M=0.8.

to the baseline in Figure 16. The salient differences are a smaller
bleed hole diameter and thinner shroud walls. This achieves an 16%
reduction in ORr , while OYp is also 18% lower. For the new probe
ORr =0.0025, which would deliver a T0 uncertainty of T0+−0.005%
for a Mach uncertainty of M+−0.02.

6 SENSITIVITY TO MANUFACTURING UNCERTAINTY
The objective of Section 5 was to find a new design which can

reduce the uncertainty in recovery ratio, Rr, due to an uncertainty
in Mach number. An additional concern is the uncertainty in Rr
due to manufacturing variations. This can be explored using global
sensitivity measures [10] such as Sobol’ indices, which can be used
to quantify the sensitivity of Rr to each design parameter. However,
as will be shown, dimension reducing subspaces can be used to
provide additional insights here. To start, a dimension reducing
subspace for Rr at M=0.8 is constructed:

Rr(x j)≈ ĝ
(

ÛUU
T x j

)
(17)

As in Section 4.2, we use variable projection, and select k=3 and
m= 2, giving an R2 score of 0.947. In this case we are concerned
with the sensitivity of Rr to perturbations in the design parameters:

Rr(x j+∆)≈ ĝ
(

ÛUU
T
(x j+∆)

)
(18)

where ∆ represents manufacturing variations injected into each design
parameter. The Rr subspace is shown in Figure 17. The arrows
demonstrate the influence of perturbing each parameter individually
by ∆=0.1. Perturbations are applied to the baseline design, but the
decomposition

ÛUU
T
(x j+∆)=ÛUU

T x j+ÛUU
T

∆ (19)

proves that the arrows will be the same anywhere in the Rr subspace.
Comparing the magnitude of the arrows indicates what design pa-
rameters cause the most significant movement in the Rr subspace

(Hole�, Kiel�inner, Kiel�outer, Hole ellipse, in that order). Addi-
tionally, by also considering the contours of Rr, the arrows indicate
what parameters are important for a given design. For example, for
the baseline design, reductions in the hole diameter are particularly
undesirable as they will move the design in a direction perpendicular
to the Rr iso-lines.

FIGURE 17: Recovery ratio subspace for M = 0.8. Arrows
demonstrate effect of perturbing each design parameter by +−0.1
(arrows scaled by 10x). Inset image shows effect of manufacturing
uncertainties in selected parameters (Refer to text).

To quantify the uncertainty of Rr due to manufacturing variations,
the hole angle, and inner and outer Kiel diameter are replaced by
normal distributions N

(
µ,σ2

)
. The original design parameters are

set as the mean µ, and σ =0.05µ. The σ values chosen all lie within
the typical tolerance level for drilling and turning of 0.1mm [35]. For
the baseline design and the new design (from Sec. 5), 1000 designs
are generated by sampling from the three normal distributions, and
kernel density estimates (KDE’s) showing the distributions of designs
in the subspace are shown in the inset of Figure 17.

The standard deviations of Rr over the KDE distributions in Fig-
ure 17 are calculated. For the new design, σ(Rr)=5.1×10−5, which
is slightly higher than that of the baseline design, σ(Rr)=3.7×10−5.
This indicates that the new design is more sensitive to manufacturing
variations in the three design parameters compared to the baseline.
The KDE’s in Figure 17 show that this is because the new design’s
distribution lies across more tightly spaced Rr iso-lines. The resulting
uncertainty in Rr for the new design is +−1.2×10−4 (at 95% confi-
dence), leading to an uncertainty in temperature of +−0.012%. This
uncertainty is of a similar magnitude to the T0 uncertainty due to Mach
number uncertainty discussed in Section 2, suggesting it is also im-
portant to take manufacturing variability into account. However, mod-
erately large manufacturing tolerances were selected for this example,
and they be smaller depending on the manufacturing techniques used.

For a final demonstration of the present approach a third design
is shown in the inset within Figure 17. For this design σ is set to be 3
times smaller for the hole and Kiel outer diameters, but 3 times larger
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for the Kiel inner diameter. The KDE for this design is therefore
stretched out in the direction of the arrows for Kiel �outer. The
KDE shows that this direction is almost parallel to the Rr iso-lines.
Therefore, the Rr uncertainty for this design is actually relatively low
((σ(Rr) = 2.2×10−5)), despite the large uncertainty in Kiel outer
diameter.

7 CONCLUSIONS
This paper has demonstrated how dimension reducing subspaces

can be utilised to explore the design space of a temperature probe.
The probe’s pressure loss coefficient, recovery ratio sensitivity to
Mach number, and the recovery ratio itself were found to admit
low dimensional structure. Exploration of the subspaces provides
a number of important insights:

• The pressure loss subspace is dominated by the Kiel outer
diameter, with the bleed hole diameter and angle being of
secondary importance. The outer diameter is found to influence
the bluff body’ loss, while the bleed hole diameter and angle
affect the behaviour of the jet exiting the bleed holes.

• For the probe considered there is shown to be an optimum
vent-to-inlet area ratio that minimises the sensitivity of recovery
ratio to Mach number, which can be further reduced with subtle
changes to the Kiel outer and inner diameters, and the bleed
hole angle.

• By mapping the loss coefficient onto the recovery ratio
sensitivity subspace, the trade-off between the two objectives
was visualised. This approach highlights regions of the design
space that are yet to be explored, and it is used to suggest
new designs. Modest reductions of 15% in the loss, and 18%
in recovery ratio sensitivity, are achieved over the baseline
design. However, the subspaces also provide confidence that
the baseline design is already relatively good.

• A dimension reducing subspace for the recovery ratio itself
was used to understand the uncertainties due to manufacturing
variability. These were shown to be of a similar magnitude to
the Rr uncertainty due to Mach number uncertainty. Compared
to global sensitivity measures, subspaces provide additional
information on what manufacturing tolerances are important
for a specific design. Or, it enables the selection of designs
which are insensitive to certain design parameters, which may
be useful if a particular feature is challenging to manufacture.

This study has demonstrated the potential for using dimension
reducing subspaces to design more accurate and less intrusive
temperature probes. Important future work could include reducing
the recovery ratio’s sensitivity to other freestream features, such as
turbulence intensity and flow angle. The approach could also be
extended to consider radiative errors, more representative conductive
errors, the probe’s temporal response, and more complex designs
such as dual shrouded probes. Dimension reducing subspaces have
been used for design space exploration in this paper, but recent

work [36] has demonstrated how they can also be used for design
optimisation in future probe design tasks.
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NOMENCLATURE
Abbreviations

CFD Computational Fluid Dynamics
DOE Design of Experiments
KDE Kernel Density Estimate
LHS Latin Hypercube Sampling
PDF Probability Density Function
RANS Reynolds-Averaged Navier-Stokes
SFC Specific Fuel Consumption

Symbols
ηc Compressor efficiency
T0 Stagnation temperature
Tm Measured temperature
P0 Stagnation pressure
γ Ratio of specific heats
Yp Stagnation pressure loss coefficient
Rr Recovery ratio
M Mach number
OYp Loss design objective
ORr Recovery ratio design objective
x Full space (7D) coordinates
xL,xU Lower and upper extents of the design space
k Maximum order of polynomial
m Number of reduced dimensions
u Dimension reducing subspace coordinates
χ Parameter space of x
f ,g,h,ĝ Polynomial approximations
UUU Orthogonal matrix
σ Standard deviation
R2 Coefficient of determination
Ṡv,Ṡht Viscous and heat transfer entropy generation rate
∆ Manufacturing variability in design parameter
� Diameter
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