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ABSTRACT

Computational fluid dynamics plays a key role in the design process across many industries. Recently,
there has been increasing interest in data-driven methods, in order to exploit the large volume of
data generated by such computations. This paper introduces the idea of using spatially correlated
polynomial ridge functions for rapid flowfield estimation. Dimension reducing ridge functions are
obtained for numerous points within training flowfields. The functions can then be used to predict
flow variables for new, previously unseen, flowfields. Their dimension reducing nature alleviates the
problems associated with visualising high dimensional datasets, enabling improved understanding of
design spaces and potentially providing valuable physical insights.
The proposed framework is computationally efficient; consisting of either readily parallelisable tasks,
or linear algebra operations. To further reduce the computational cost, ridge functions need only
be computed at only a small number of subsampled locations. The flow physics encoded within
covariance matrices obtained from the training flowfields can then be used to predict flow quantities,
conditional upon those predicted by the ridge functions at the sampled points.
To demonstrate the efficacy of the framework, the incompressible flow around an ensemble of
aerofoils is used as a test case. On unseen aerofoils the ridge functions’ predictive accuracy is
found to be reasonably competitive with a state-of-the-art convolutional neural network (CNN). The
local ridge functions can also be reused to obtain surrogate models for integral quantities such a
loss coefficient, which is advantageous in situations where long-term storage of the CFD data is
problematic. Finally, use of the ridge framework with varying boundary conditions is demonstrated
on a three dimensional transonic wing flow.

Keywords Flowfield Estimation · Dimension Reduction ·Machine Learning · Computational Fluid Dynamics

1 Introduction

The industrial penetration of Reynolds Averaged Navier-Stokes (RANS) has gone far beyond its mainstay of aerospace
engineering. Today it is being heavily used in automative design [1], building design [2], ventilation system design [3],
marine propeller design [4] and more recently in the understanding of oral transmissions [5, 6]. In using a turbulence
model, RANS avoids the need to resolve pertinent length- and time-scales of turbulence; significantly slashing the
cost of generating a flowfield. That said, owing to the size and increasingly realistic mesh topologies, these RANS
computations can themselves take several hours on modern clusters. Additionally, in both design and analysis contexts,
there is a need to assess multiple geometry and boundary conditions, adding to the computational cost.

It is therefore unsurprising that many have sought to develop ways of (i) efficiently representing a flowfield and
(ii) approximating it for a new set of boundary conditions or geometry definition. Falling under the remit of sparse
reconstruction, there exists a variety of approaches for reconstructing full unsteady flowfield information from a limited
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subset of time-dependent measurements. A suitable basis must first be chosen, onto which the sparse measurements are
projected in order to obtain a full reconstruction. Often the chosen basis is linear, and involves a direct computation of
the singular value decomposition. For example; Manohar et al. [7] use proper orthogonal decomposition to reconstruct
full vorticity fields of laminar flow over a cylinder, while Discetti et al. [8] reconstruct turbulent velocity fields from
sparse sensors. More recently, supervised machine learning methods have been used to provide a non-linear framework,
with Erichson et al. [9] using a shallow neural network to reconstruct the laminar flow over a cylinder.

Meanwhile, in a range of fields, including uncertainty quantification, design optimisation, and sensitivity analysis, lower
fidelity surrogate models (or emulators) are constructed from existing full-field simulation data. Deep neural network
architectures, routinely used in data mining, have been used with considerable success as a function approximation
technique for high-dimensional physics derived datasets [10, 11]. To increase accuracy, a network can be extended to
arbitrary depth and width, however this leads to many weights and a very large amount of training data being required
to alleviate overfitting. Recently, convolutional neural networks (CNN’s) have been shown to be a promising approach
to ameliorate this problem for CFD applications. CNN’s use convolutional layers to take advantage of local spatial
coherence in the input. These layers, combined with successive spatial resizing of the input data, can significantly
reduce the number of weights compared to fully connected neural networks. Guo et al. [12] introduced the idea of using
a CNN to learn a mapping between an object’s geometric representation and the flowfield around it. Bhatnagar et al.
[13] and Thuerey et al. [14] recently built upon this work by introducing boundary conditions as an additional input.
Such approaches offer accurate and fast data-driven flowfield predictions, allowing for near-immediate feedback for
real-time design iterations. Following a different strategy, Tompson et al. [15] replace the pressure projection step in a
CFD solver with a CNN in order to accelerate simulations, whilst Sekar et al. [16] use a CNN for the inverse design of
an aerofoil, and Jin et al. [17] use a CNN to estimate velocity fields from surface pressure distributions.

Although applications of deep learning networks to real-world problems have become ubiquitous, our understanding
of why they are so effective is lacking[18]. Techniques for interpretation are available [19], but they may not be
particularly accessible for those without some specialised deep learning knowledge. Moreover, for problems with large
numbers of features, widely adopted approaches such as those based on Shapley values [20] quickly become intractable.
Consequently, in many fields of engineering, there is still a demand for more readily interpretable surrogate models,
even if these bring a slight trade-off in predictive accuracy. One approach to easing the challenge of interpretation, is to
reduce the dimensionality of the problem. By reducing the dimensionality of the input space, data-driven ridge functions
[21] facilitate straightforward visualisation and understanding, whilst at the same time reducing data requirements. del
Rosario et al. [22] show how ridge functions can offer important insights during the conceptual design phase, and in
[23], ridge functions aid exploration of a stagnation temperature probe’s design space. Wong et al. [24] introduce the
idea of using dimension reduction to estimate flow quantities, embedding polynomial ridge functions on an aerofoil
surface to estimate the pressure distribution. In this paper, we develop spatially correlated ridge functions, with the
target output being flowfield variables such as pressure, velocity or even turbulent variables.

To demonstrate the utility of the proposed framework, we begin by exploring the prediction of flowfields around a
set of aerofoils. The design of efficient aerofoils is important since their use is ubiquitous across many industries; for
example aircraft wings and controls surfaces, car spoilers, and the gas turbine blades found in aircraft engines and power
generation turbines. To provide a point of reference, we compare and contrast the proposed approach to a state-of-the-art
flowfield prediction framework based on a convolutional neural network. In addition to examining the predictive
accuracy, we explore how the dimension reducing nature of the learned model aids understanding of the existing
training dataset. To assess the limitations of the proposed approach, we then tackle the transonic flow over a three
dimensional wing, with the inflow boundary conditions varied. We examine how the underlying polynomials perform
when extrapolating away from the training data, and discuss approaches to handling this situation. For a hands-on
exploration of the framework, example code and an interactive web app are available at github.com/ascillitoe/
flowfield_approx.

2 Mathematical foundations

In this section, we detail some of the mathematical ideas that underpin this paper.

2.1 Flowfield representation

It will be useful to represent a steady flowfield as a set of related scalar-field quantities. These include, but are not
limited to, static pressure p, density ρ, a velocity component i.e. vx, and even the turbulent viscosity νt. These fluid
properties are assumed known for any particular discretised location s ∈ R3 within the three-dimensional flow domain
S. We consider s to be synonymous with the number of nodes in the flowfield, where s1 corresponds to the first
coordinate and sN corresponds to the last.
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Ignoring model parameters and limiters embedded within any modern flow-solver, one can group the parameters
influencing a flowfield into (i) those that govern the mesh and its associated geometry, and (ii) those that set the
boundary conditions. For simplicity, we condense the former into a vector of shape parameters x ∈ Rd arising from
an appropriately chosen design space X, e.g., Hicks-Henne bump functions, free-form deformation amplitude, or the
inputs to an autoencoder that characterises the geometry [25]. We characterise the boundary conditions by a vector
v ∈ Rb where b represents the number of input boundary conditions, e.g., inlet stagnation pressure, exit static pressure,
isothermal walls, etc.

Then, following the statement at the start of this section, we can represent the steady flowfield as a set of related vectors

F =


 p (x,v; s1)

...
p (x,v; sN )

 ,
 ρ (x,v, s1)

...
ρ (x,v; sN )

 ,
 vx (x,v; s1)

...
vx (x,v; sN )

 , . . . ,
 νt (x, ζ; s1)

...
νt (x, ζ; sN )


 . (1)

For generality, we refer to any scalar field quantity by f and thus each of the vectors in F is generalized via

f =

 f (x,v; s1)
...

f (x,v; sN )

 . (2)

Each element in (2) is a scalar-valued function depending only on x and v. Identifying a suitable surrogate model for f
is challenging because it effectively has Rd ×Rb ×RN degrees of freedom, leading to an insuperable number of model
evaluations. In this paper, we demonstrate how subspace-based dimension reduction approaches can be used to thwart
the prohibitive cost associated with constructing such a surrogate. In what follows, we present a class of techniques for
approximating each element. Without loss in generality, we assume the boundary conditions are fixed, such that each
scaler-valued function depends only on x. However, in Section 5 we shall consider an alternative case where v is varied
whilst x is fixed.

2.2 Ridge approximations

Central to this paper is the notion that a scalar-valued high-dimensional function, such as the static pressure at a given
computational node si, can be approximated by a low-dimensional function defined over a sub-manifold

f (x; si) ≈ pi
(
W T

i x; si
)
, (3)

where i = (1, . . . , N). Here Wi ∈ Rd×n is an orthonormal matrix where n � d, and pi is a function in Rn. We
define the approximation in (3) as a ridge approximation, an approximate form of what Pinkus [21] terms a generalised
ridge function. The intuitive computational advantage behind ridge approximations is that instead of estimating a
function in Rd, we approximate it in Rn, which is intrinsically more data efficient. Numerous approaches are available
in literature for identifying such structure using only data-driven techniques. These require input-output data pairs of
the form {xm, f (xm; si)}Mm , where M represents a suitable number of design of experiments required to approximate
the function in Rn. Approaches rooted in classical regression include sliced inverse regression [26], principal Hessian
directions [27], contour regression [28], sliced average variance estimation [29], and minimum average variance
estimation [30]. More recent approaches include the works of Constantine et al. [31] and Hokanson and Constantine
[32] that assume pk is a polynomial, and explore optimisation techniques over the Grassmann manifold to identify both
the coefficients of the polynomial and the dimension reducing subspace W . Algorithms for identifying such ridge
structure exist even for Gaussian process models (see [33] and [34]).

To provide an intuitive understanding of what these methods can offer, in Figure 1 we apply subspace-based dimension
reduction to a dataset obtained from [35] and publicly available in github.com/equadratures/data-sets. When
a suitable subspaceW is found, the M number of input-output training data pairs {xm, fm}Mm=1 collapse onto a ridge
over the subspace, where they can be used to obtain a functional approximation (a polynomial in this case). Plots of
function values over this subspace are called sufficient summary plots[31], and are useful in visualising the behaviour of
functions in high dimensions.

2.3 Polynomial ridge approximations

Let us assume access to a training dataset {X,F }, where

X =

[ | |
x1 . . . xM
| |

]
, F =

 − fT1 −
...

− fTN −

 =

 | |
f̃1 . . . f̃M
| |

 (4)
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a) Equal contributions from all input dimensions, with a unit
vector W = 1/

√
25

b) Dimension reduction to obtain W , with a cubic orthogonal
polynomial fitted over the subspace

Figure 1: Subspace-based dimension reduction applied to a turbo-machinery problem[35]. The output scalar-valued
quantity of interest f(x), the efficiency of a turbo-machinery blade, is a function of the d = 25 design parameters in
x ∈ R25. The quantity f is projected over two different subspacesW Tx. In a),W is chosen so that the subspace is
formed from an equal contribution of all 25 parameters, whilst in b), a single linear combination of the 25 parameters
which best describes the variation in f is obtained.

withX ∈ Rd×M and F ∈ RN×M . As before N represents the number of spatial nodes; d the dimension associated
with the design space x ∈ X, and M the number of distinct flow-fields, each corresponding to a new design. At an
isolated node si across all the flow-fields, we wish to identify a polynomial ridge approximation of the form given in
(3). To elaborate on the form of this ridge approximation, we rewrite it as

f (x; si) ≈ P
(
W T

i x∗
)
αi (5)

where

P
(
W T

i X
)

=

 φ1

(
W T

i x1

)
. . . φL

(
W T

i x1

)
...

...
...

φ1

(
W T

i xM
)

. . . φL
(
W T

i xM
)
 (6)

represents a Vandermonde-type matrix with n-variate polynomial basis terms {φ1, . . . ,φL} with a cardinality of L,
with unknown polynomial coefficients αi ∈ RL. The cardinality here is defined as the total number of basis terms, and
will vary depending on the highest degree in along each dimension and the nature of the interactive polynomial terms
between different dimensions. For further details on the construction of multivariate polynomials, we refer the interest
reader to Section 1.1 in [36]. The intention behind phrasing our objective as (7), is that for a new design x∗, we can
estimate the scalar field value at any node si using the computed polynomial ridge approximation. To ensure solutions
to this problem are feasible, it will be useful to ensure that the polynomial matrix P is well conditioned. This can be
aided by adopting orthogonal polynomial basis terms—i.e., Legendre, Hermite or Jacobi—as these have demonstrably
lower condition numbers than their monomial counterparts. In this paper, we utilise Legendre polynomials. This has
the additional advantage of being able to rapidly yield moments and sensitivities (see [37]).

The ridge approximation in (5) can be obtained by solving the non-linear least squares problem

minimise
Wi∈Rd×n, αi∈RL

∥∥fi − P (W T
i X

)
αi
∥∥2
2
, (7)

which can be simplified to an optimisation problem over the Grassmann manifold via the variable projection method[38]

minimise
Wi∈Rd×n

∥∥∥fi − P (W T
i X

)
P
(
W T

i X
)†

fi

∥∥∥2
2

(8)

⇒ minimise
Wi∈Rd×n

∥∥∥(I − P (W T
i X

)
P
(
W T

i X
)†)

fi

∥∥∥2
2

(9)

⇒ minimise
Wi∈Rd×n

∥∥∥O⊥
P (WT

i X)fi

∥∥∥2
2

(10)
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where the superscript † denotes the matrix pseudoinverse, andO⊥ is the orthogonal projector onto the complement of
the column space of P . Gradients for this objective can be readily computed and used in a Gauss-Newton algorithm
over the Grassman manifold, as demonstrated in [32]. The computation of the coefficients αi trivially follows. This
enables us to compute the scalar field quantity at a given node i for a new design x∗ with P

(
W T

i x∗
)
αi and by

extension the scalar field across all N nodes via f (x∗; s1)
...

f (x∗; sN )

 ≈
 P

(
W T

1 x∗
)
α1

...
P
(
W T

Nx∗
)
αN

 , (11)

which by construction constraints all subspacesW1, . . . ,WN to have the same dimension. While the calculation of
polynomial ridge approximations across all N nodes is an embarrassingly parallel operation—as each the input-output
data pairs at each node are treated independently—it will be useful to leverage the spatial correlations in a given scalar
field to reduce the number of times (10) has to be solved.

2.4 Spatial correlations

Subspace-based dimension reduction approaches and the related active subspaces [39] have enjoyed tremendous
computational success over the past few years—ushering in a shift from prior sparse grids and full-space design of
experiment approaches. As a general observation, within computational fluid dynamics applications, these methods
have been primarily applied on integral quantities of scalar field outputs, i.e., efficiency, lift, drag, etc. Wong et al. [24]
recognised this, and posited that approximating the composite scalar fields of such integral quantities using dimension
reducing subspaces may not only offer greater insight into significant flow features, but may even further reduce the
number of simulations required to do so. One important idea born from their work is that the ridge approximations of
nodes that are adjacent to each other in a flowfield are likely to be similar in the way they depend on input parameters. In
locally smooth regions of the flowfield, nearby nodes are predominantly affected by a similar subset of inputs, resulting
in similarity in their ridge subspaces. This notion is quantified via the subspace distance, and in Wong et al. [24] the
authors demonstrate that this property enables efficient compression and recovery of flow fields. In what follows, we
build upon this idea using a different formalism, leveraging some of our preliminary work in [40].

Using the data available in F , we construct a sample covariance matrixK ∈ RN×N of the form

K =
1

M

M∑
m=1

(
f̃m − E

[
f̃m

])(
f̃m − E

[
f̃m

])T
, (12)

where E
[
f̃m

]
denotes the mean of them-th scalar field across all theN nodes. It is important to note that this covariance

matrix captures the spatial correlations across all the nodes for a given scalar field quantity. Its diagonal represents the
sample variances in the scalar field at each of the N nodes.

We partition the scalar field across all N nodes into two subsets: a smaller subset J with J nodes (ŝ1, . . . , ŝJ), and a
subset R containing the remaining N − J nodes

(
s′1, . . . , s

′
N−J

)
with J << N . We assume that the scalar field for

any design x∗ across all N nodes can be expressed as a sample from the multivariate normal distribution N (E [f ] ,K),
where the first argument represents the mean and the second the covariance. The covariance matrix in (12) can be
partitioned into (N − J)× (N − J) and J × J blocks

K =

[
K11 K12

KT
12 K22

]
, where K11 ∈ R(N−J)×(N−J) and K22 ∈ RJ×J . (13)

As the scalar fields arising from this partition will have Gaussian marginals, we can use the Schur complement to
approximate the scalar field at the nodes in R by computing the ridge approximations at the nodes in the smaller set J
only  f (x∗; s′1)

...
f
(
x∗; s′N−J

)
 ≈K12K

−1
22


 P

(
W T

1 x∗; ŝ1
)
α1

...
P
(
W T

J x∗; ŝJ
)
αJ


 . (14)

In a nutshell, this implies that we only need to solve (10) J times rather than that N . However, this approach relies on
the assumption that a suitableWi is found at each point in J , such that the projectionW T

i x at each point in the subset
explains a large percentage of the total variance at that point. Without this assumption, the resulting correlation matrix
K will become increasingly diagonal in higher dimensions, and we will be unable to recover the scalar field at the
remaining nodes in R. To alleviate this issue, poor quality ridge approximations are removed from the smaller subset
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J , and added back into R. Various heuristics can be used to assess the quality of ridge approximations. In this paper,
we use the training R2 scores, as discussed in Section 4.5. Finally, for the stability of this procedure it is important that
the inverse ofK22 is computed carefully. In the present work, this is done via Cholesky decomposition, with a small
constant added to the diagonal to prevent singular matrices.

3 Computational setup

In this section we outline the two test cases examined in this paper, in addition to summarising the implementation of
the ridge approximation framework and the CNN it will be compared to.

3.1 Test Cases

Within an engineering context, flowfield predictions around a given object are often required at a range of operating
conditions. Whereas in other cases, flowfield predictions may be required at a given operating condition, whilst the
object itself is altered. To examine both scenarios we use two test cases; 1) a two dimensional subsonic aerofoil flow,
with a large number of different aerofoil designs; and 2) a three dimensional transonic wing flow, with the freestream
conditions varied.

3.1.1 Exploring the design of a subsonic aerofoil

We start with the well known NACA0012 aerofoil, discretised with a 449x129 curvilinear C-grid2, and deform it to
obtain an ensemble of aerofoil designs. The aerofoil surface is deformed using d = 50 Hicks-Henne bump functions
[42]

s2(s1) = s2,base(s1) +

d∑
j=1

βjbj(s1), (15)

where s2,base are the s2 coordinates of the baseline aerofoil, bj is the jth bump function, and s1 and s2 are normalised
by the aerofoil’s axial chord length C1. The bump amplitudes [β1, . . . , βd] are then stored within the input vector
xm ∈ Rd for each mth design.

Figure 2: Deformations made to the NACA0012 aerofoil. Fifty randomly selected deformed designs are shown.

To generate a dataset for training and testing, we create a (M = 2000)-point design of experiments (DoE) with
uniformly distributed Monte Carlo samples for x. A random sample of the resulting aerofoil designs, as well as the full
range of deformations, is shown in Figure 2. Flowfields are simulated for each design using the incompressible solver
of the SU2 CFD code [43]. The commonly used Spalart–Allmaras RANS model[44] is used to represent the effects
of turbulence, with the freestream turbulence viscosity ratio set to (νt/ν)∞ = 5. The freestream velocity magnitude
is set to U∞ = 1 m/s, and the reference static pressure is set to zero. The laminar viscosity ν∞ is then set to give a
Reynolds number of Re = U∞C1/ν∞ = 6× 106. Each design is run at three angles of incidence α∞ = 0◦, 10◦ and
15◦, leading to a dataset consisting of 6000 flowfields in total.

The grid deformations performed when perturbing the baseline aerofoil to reach each new design mean that, even
away from the aerofoil surface, grid points are at a slightly different location for each design. Since we wish to learn a
functional mapping for the flowfield variables at fixed points in space, we re-sample3 each flowfield onto the 90x318
Cartesian grid shown in Figure 3, and remove points lying inside the solid region of the aerofoil. We choose a Cartesian
grid here since we are interested in full flowfield visualisations, but the approach is equally applicable to individual
points, surfaces (see Ref. [24]) or planes.

2This grid is used as a verification case by the AIAA Fluid Dynamics Technical Committee Turbulence Model Benchmarking
Working Group (TMBWG) and is available from turbmodels.larc.nasa.gov/naca0012_grids.html. Diskin et al. [41] show
lift and drag coefficients to be sufficiently grid independent at the 449x129 grid resolution.

3Resampling is performed with the pyvista python library [45], which uses linear interpolation for resampling.
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Figure 3: Zoomed-in view of the discrete curvilinear C-grid representation of a deformed aerofoil (blue points), and the
Cartesian grid (black) the flow variables are resampled onto. The aerofoil boundary is shown in yellow.

After the above procedure we are left with N = 90× 318 = 28.6× 103 output values fi,m for each input xm, forming
M input/output pairs (xm, fm)Mm=1, for each of the three angles of incidence investigated. The scalar fi,m is the field
variable at the ith grid point for the mth design, where we take the static pressure p, velocities u, v, and turbulent
viscosity νt as the field variables to predict. We normalise the aforementioned variables by taking the static pressure
coefficient Cp = (p− p∞)/(p0∞ − p∞), axial velocity ratios u/U∞, v/U∞, and turbulent viscosity ratio νt/ν∞. The
M = 2000 designs are further split up into Mtrain = 500 training designs and Mtest = 1500 testing designs.

3.1.2 Varying freestream conditions for a transonic wing

To explore predictions with varying operating conditions, we take the compressible inviscid flow around the well known
ONERA M6 transonic wing test case [46]. The salient details of this case are presented in Figure 4. It is discretised by
a N = 108.4× 103 point unstructured grid, with no boundary layer grid necessary due to the inviscid nature of the
flow. Freestream boundaries are placed 10.5 root chord length’s away from the wing, with the freestream Mach number
and angle of incidence set at Ma∞ = 0.8395 and α∞ = 3.06◦ for the baseline case. A span-wise symmetry boundary
is then placed at s3 = 0. The flows are simulated using the compressible inviscid solver of the SU2 CFD code[43], and
in Figure 4 the resulting Mach contours are shown on the surface of the wing for the baseline case. The flowfield here
bears a close resemblance to the real viscous flow, with a characteristic “lambda shock” pattern visible on the upper
surface of the wing.

Shown in the inset figure in Figure 4 is the design of experiments used to explore the freestream conditions. For
the training data, operating points for Ma∞ and α∞ are obtained by applying six-point Gauss-Lobatto quadrature
rules over the intervals Ma∞ ∈ [0.6, 1.02] and α∞ ∈ [0, 6], leading to a total of Mtrain = 36 training flows. For
testing, Mtest = 25 points are sampled from the multivariate normal distribution N (µ,σ), with µ = [0.8, 3]T and
σ = [0.14, 3]T . Unlike in test case 1 the geometry is fixed here, therefore there is no need to resample the flowfields
onto a base grid. For the scalar field variable fi,m we consider the local Mach number Ma.

3.2 Polynomial ridge function implementation

To obtain dimension reducing ridges, we use the equadratures [47] python library which contains an implementation
of the polynomial variable projection method described in Section 2.3. Since each ridge function is independent
of one another, we parallelise the task in an embarrassingly parallel fashion, with computation of individual ridge
approximations performed by individual Python worker processes. The code is parallelised using the joblib library with
the loky backend. Each parallel Python process is run concurrently on a separate computational core on a F72s_v2
virtual machine (36 physical CPU’s, 144 GiB memory) on the Microsoft Azure cloud computing service. For the
N = 28.6 × 103 points in test case 1, with 500 training designs, training takes approximately 20 minutes per field
variable (≈ 24 ridge approximations per second). Note that training times can be substantially reduced by taking
advantage of spatial correlation in the manner described in Section 4.5.

The flowfield reconstruction procedure described in Section 4.5 is entirely made up of linear algebra operations, thus it
is straightforward to implement efficiently with existing linear algebra libraries. For this we use the numpy [48] python
library with Intel R© MKL. To limit computation and storage requirements, we compute only theK12 andK22 blocks of
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Figure 4: Mach number contours on the suction surface of the ONERA M6 transonic wing, under the baseline freestream
conditions of Ma∞ = 0.8395 and α∞ = 3.06◦. The unstructured grid is shown on the s3 = 0 symmetry plane, and the
s3/S = 0.2 slice is highlighted. The design of experiments (DoE) used to generate the different freestream conditions
for training and test data is also shown in the inset figure.

the covariance matrix in (13), since only these blocks are required by the Schur complement step in (14). If further cost
savings are required, low-rank approximations forK can be obtained, as is done in[40].

3.3 Convolutional neural network implementation

Thuerey et al. [14] explored a number of CNN architectures for flowfield predictions, and found the U-Net architecture
[49] to be the most successful. In this paper we implement a modified version of the framework proposed by Thuerey
et al. [14], shown in Figure 5. The U-Net architecture consists of an encoder, which progressively down-samples the
128× 128× 4 input data with strided convolutions. The four input channels consist of a boolean mask to define the
aerofoil geometry, and three uniform input channels defining the freestream conditions Re, α∞, and (νt/ν)∞. This
allows the network to extract increasingly large-scale and abstract information as the number of feature channels grows,
until we are left with a 1× 1× 256 derived feature vector. The decoder then does the opposite, with depooling layers
reducing the number of features while increasing the spatial resolution. Eventually we are left with four 128 × 128
output channels, consisting of flowfield estimates for Cp, u/U∞, v/U∞ and νt/ν∞. Skip connections help the network
to consider low-level input information during the reconstruction of the solution in the decoding layers. The weights
w

(l)
ij (and biases b(l)i d) of the neural network are obtained by minimising the loss function

L =
1

M

1

N

M∑
m=1

N∑
i=1

φhub

(
Ĉpi,m − Cpi,m

)
+ φhub

(
ûi,m
U∞

− ui,m
U∞

)
+ φhub

(
v̂i,m
U∞
− vi,m
U∞

)
+ φhub

(
ν̂ti,m
ν∞

−
νti,m
ν∞

)
,

(16)

with ·̂ denoting the CNN prediction for the field variable, and φhub denoting the Huber loss function[50]. As seen in
(16), the error is averaged over all M number of training designs and N number of grid points. This loss function is
differentiable, enabling it to be back-propagated into the network in order to compute the weight gradient ∇wL, which
is important for the optimisation (learning) process.

The complexity of the above CNN is altered in this paper by varying the number of channels (and therefore the number
of parameters), with the 488k parameter CNN in Figure 5 found to offer the best compromise between training times
and accuracy. All CNN’s detailed in this paper are implemented in the PyTorch python library, and trained on a GTX970
1664 core NVIDIA GPU. Training times range from 50 seconds to 80 minutes, depending on the complexity of the
network and the number of training designs. Further details are included in Appendix A.
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Figure 5: The 488k parameter U-net convolutional neural network architecture used for flowfield predictions. Arrows
indicate the direction of forward operations. The network is fully convolutional with 14 layers. Further details of the
architecture are given in Appendix A.

Figure 6: Normalised axial velocity, u/U∞, for a deformed aerofoil (from the test set) at an angle of incidence of
α∞ = 10◦. Colour contours show predictions from the second degree polynomial ridge approximations, isolines show
the true CFD solution. Sufficient summary plots at four locations are shown.

4 Test case 1: Design of a Subsonic Aerofoil

As an initial demonstration, ridge approximations are obtained for the static pressure coefficient Cp = (p0∞ −
p0)/(p0∞ − p∞), normalised axial velocity u/U∞, and turbulent viscosity ratio νt/ν, with 500 aerofoil designs used
for training. Flowfield predictions for a new aerofoil design can then be obtained by transforming the new design vector
x to the reduced dimensional space, and evaluating the polynomial ridge approximation pi

(
W T

i x; si
)

at each point
i = 1, . . . , N in the flowfield. In Figure 6, the predicted normalised u velocity is shown for a randomly selected design
from the test set. Qualitatively, the predictions are in close agreement to the true velocity field from the CFD solution,
shown by the black iso-lines. The design shown here was not used during training, hence the ridge approximations
appear to be able to learn enough of the flow physics to be able to make predictions for the new design.

9
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In addition to making flowfield predictions, a second key aspect of the ridge approximations are sufficient summary
plots, seen in the insets within Figure 6. Applied to aerofoil design, they provide visualisation of how the quantity of
interest, in this case the u velocity at selected locations, is altered as the shape is changed. This is made possible since
the sufficient summary plot shows the u velocity over the reduced dimensional space WTx ∈ R, instead of the full
space x ∈ R50. The low scatter of train and test points in the summary plots highlights that low dimensional structure
has been successfully found.

4.1 Accuracy of Ridge Approximations

To explore how the accuracy of the proposed ridge approximation framework compares to a state-of-the-art convolutional
neural network (CNN), ridge approximations and the 488k parameter U-Net in Figure 5 are trained on Cp and u/U∞
around the aerofoil at two angles of incidence, α∞ = 0◦ and α∞ = 10◦. To enable fair accuracy comparisons the ridge
approximations are obtained on the same 1282 grid used for the CNN instead of the finer 90x318 grid used elsewhere.
The normalised mean absolute error of predictions

MAEσ =
1

N

N∑
i=1

 1
M

∑M
m=1

∣∣∣f̂i(xm)− fi(xm)
∣∣∣

σ[fi(xm)]

 , (17)

is then measured for the training and test designs. At each point, the absolute error is averaged for M number of designs,
then normalised by the standard deviation of the true data at that point. The result is averaged over all N number of
points. This is done whilst varying the number of training designs, in order to obtain the error curves in Figure 7. Both
the ridge approximation and CNN prediction errors exhibit the same general trends; for low numbers of training designs
the test errors are considerably higher than the training errors, suggesting a lack of generalisation (i.e. the models are
overfitting to the training data). However the test errors are significantly decreased as the number of training designs is
increased. Perhaps surprisingly, despite the data hungry reputation of deep neural networks, the CNN framework is
able to achieve low accuracies with a relatively small number of training designs (MAEσ < 10% with Mtrain < 100).
As noted by Ronneberger et al. [49], this is a key benefit of the U-Net and other CNN architectures; the strong use of
data augmentation via convolutions allows the available training data to be used more efficiently (compared to a fully
connected deep neural network).

Encouragingly, for the α∞ = 0◦ case (Figs 7a and 7b) the ridge approximations are able to achieve mean test errors
which are competitive with the CNN. At the higher angle of incidence of α∞ = 10◦ (Figs 7c and 7d) the flowfield is
more complex, with stronger streamline curvature leading to larger pressure gradients and greater non-linear behaviour.
This case is more challenging for the ridge approximations, with test errors of MAEσ ≈ 4% compared to the CNN
test errors of MAEσ ≈ 1%. However, accuracies of under 4% would be acceptable for many preliminary design
applications. Additionally, as the MAE fields in Figure 8 show, the ridge approximations’ prediction errors are actually
lower than the CNN errors in many regions of the flow. Compared to the rather randomly distributed CNN errors, the
ridge approximations’ errors exhibit a smoother spatial distribution, with higher errors near to the aerofoil surface and
in the wake.

In the above results, ridge approximations are computed using first degree polynomials. In Table 1, results with higher
degree polynomials are presented. Clearly, increasing the polynomial degree, p, allows for lower test errors to be
obtained (although excessively high-degree polynomials will suffer from over-fitting). However, increasing p also
increases the cardinality of the polynomial; if all interaction terms are included, and the polynomial has degree p in
all n directions, its cardinality is given by L = (p+ 1)n. More degrees of freedom result in higher variances of the
resulting regression estimators, necessitating more training samples to mitigate this. The exponential dependence on
polynomial degree implies that higher degree polynomials are significantly more costly when in higher dimensions.
This highlights a key benefit of obtaining polynomials in a dimension reducing subspace of dimension n, where n� d.
Various approaches exist to mitigate this exponential scaling[36]. However, even then, it is still desirable to reduce the
number of dimensions. As a compromise between accuracy and computational cost, second degree polynomials are
used in the remainder of the results presented for the present test case.

4.2 Design Space Exploration

The dimension reducing nature of the ridge approximations is particularly useful for design space exploration. To
demonstrate, ridge approximations for the turbulent viscosity ratio νt/ν∞ are obtained using all 500 training designs.
In Figure 9 a sufficient summary plot for a point in the aerofoil’s wake is shown. The turbulent viscosity ratio in the
wake is of interest because high levels of turbulence in wakes can be a leading source of loss in many flows [51]. The
sufficient summary plot is examined, and a design at either end of the WTx subspace is selected. Contours of the
turbulent viscosity ratio for the two designs are shown in Figure 9. Through this approach, the end user can explore how
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a) Cp, α∞ = 0◦ b) u/U∞, α∞ = 0◦

c) Cp, α∞ = 10◦ d) u/U∞, α∞ = 10◦

Figure 7: Normalised MAE of Cp and u/U∞ predictions for first degree polynomial ridge approximations and
convolutional neural network at two angles of incidence. Solid lines = test error, dashed lines = training error. Results
are averaged over three randomly selected train/test splits.

a) Ridge approximations b) Convolutional neural network

Figure 8: Comparison of absolute error in predictions of normalised axial velocity from the first degree ridge approxi-
mations and convolutional neural network, for an aerofoil from the test set at α∞ = 10◦.

flowfield variables at select locations in the flowfield change as they traverse the design space. Such an activity would
be far more challenging when negotiating the original design space x ∈ Rd. Effectively, dimension reduction distils
the design space into critical directions along which quantities of interest exhibit maximum variance, which enables
efficient design space exploration.
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Table 1: Normalised MAE of ridge approximations with various polynomial degrees, for the Cp and u/U∞ fields at an
angle of incidence of α∞ = 10◦.

Polynomial degree, p Training MAEσ (%) Test MAEσ (%)
Cp u/U∞ Cp u/U∞

1 2.8 3.5 3.6 4.5
2 2.1 2.8 2.9 3.7
3 1.6 2.0 2.7 3.6

Figure 9: Turbulent viscosity ratio, νt/ν∞, for two deformed aerofoils (from the test set) at an angle of incidence of
α∞ = 10◦. Colour contours show predictions from the ridge approximations, isolines show the true CFD solutions.
The two designs are at either end of the sufficient summary plot for a point in the wake.

In addition to exploring directions of maximum variance, one can also explore directions along which quantities of
interest exhibit minimum variance. Following Section 2.2, the input design vector can be decomposed as

x = WW Tx + V V Tx

= Ww + V v
(18)

where w = W Tx is the active coordinate and v = V Tx the inactive coordinate. The inactive subspace V permits
identification of designs which are invariant with regards to the quantity of interest. The task is to find input vectors x
with a fixed w but different v, whilst obeying the constraint −1 ≤ x ≤ 1, for which we use a hit-and-run algorithm
similar to that implemented in [52]. In Figure 10, this is done for the ridge approximations at the locations labelled a)
and b) in Figure 6. The resulting design envelopes inform us how the aerofoil can be deformed without the quantity of
interest u/u∞ at these two locations being affected. Such information can be used to form manufacturing tolerances, or
to decide whether to scrap components, as is done in [23, 53, 54].

a) b)

Figure 10: Design envelopes obtained by sampling the inactive subspaces of the ridge approximations for u/u∞ at
locations a) and b) in Figure 6. 1000 samples are generated using a hit-and-run algorithm [52], with the grey lines
corresponding to the blade profiles of 10 randomly selected samples.

4.3 Physical Insight

In addition to exploring the design space, ridge functions can also provide important physical insights. As an example,
we consider the stagnation pressure around the aerofoil. In an ideal (inviscid) incompressible flow, the stagnation
pressure, p0 = p + 0.5ρU2, is constant along streamlines4. Streamline curvature results in a reversible exchange
between the static pressure p and dynamic pressure 0.5ρU2. However, in a real flow, irreversible processes such as

4The stagnation pressure is constant everywhere if the flow is inviscid and irrotational.
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viscous effects cause a loss in p0, which it is important to control. Take the case of an aircraft; high losses over the wing
are synonymous with high drag [55], while in the engines, high losses lead to decreased component efficiencies, both
of which lead to a higher fuel consumption. The pressure loss at a given location s can be quantified through the loss
coefficient

Yp(s) =
p0∞ − p0(s)

0.5ρ∞U2
∞

, (19)

where p0∞ is the freestream stagnation pressure, and Yp = 0 indicates no loss in stagnation pressure, while Yp = 1
indicates a total loss in stagnation pressure.

Figure 11: Contours of loss coefficient, Yp, for a deformed aerofoil from the test set (“Design 1”) at an angle of
incidence of α∞ = 10◦. A line at 50% axial chord downstream of the trailing edge is highlighted, and sufficient
summary plots are shown for two points within the wake, on this line. Design 1, and a second design, are highlighted in
the summary plots.

The loss coefficient Yp is calculated from the CFD data for 500 training designs, and the approximations for a randomly
selected test design are visualised in Figure 11. In Figure 12a, profiles of Yp across the s1/C1 = 1.5 plane are plotted
for the two designs labelled 1 and 2 in Figure 11. For both designs, the high loss in the wake (around 0 ≤ s2/C1 ≤ 0.15)
is accurately predicted by the ridge functions.

The sufficient summary plots in Figure 11 show how Yp at probe locations A and B change as the design space is
traversed. Furthermore, the dimension reducing subspace vector W can be examined. Recalling that in the present
framework x contains the Hicks-Henne bump amplitudes, the elements of W show us how the bump amplitudes affect
the reduced coordinates WTx. In Figure 12a, the scaled elements of W for the Yp ridge functions at A and B are
projected onto the baseline aerofoil geometry5. The weights offer important physical insights here; they show us how
the aerofoil surfaces must be deformed in order to affect the loss coefficient Yp at probes A and B.

4.4 Obtaining Global Quantities

Understanding the sensitivity of local flow variables to a design can be invaluable to a designer. But, sometimes, a
designer may also be interested in global quantities of interest. For example, in the present case, the mass averaged loss
across the s1/C1 = 1.5 line in Figure 11 is an important quantity, and is given by

Ȳp =

∫
u(s1, s2)Yp(s1, s2)ds2∫

u(s1, s2)ds2
, (20)

where u(s1, s2) and Yp(s1, s2) denote the local axial velocity and loss coefficient respectively. The mass averaged loss
represents the total pressure loss caused by the aerofoil. A surrogate model for Ȳp could be obtained by preprocessing
the CFD data, and then computing a ridge approximation for the precomputed Ȳp values. However, alternatively,
the local ridge functions themselves can be integrated following the approach outlined in Appendix B. A dimension

5Each element of the subspace weight vector is plotted at the surface location of its associated bump.
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a) b)

Figure 12: a) Profiles of loss coefficient Yp across s1/C1 = 1.5, and their ridge approximations, for the two designs
highlighted in Figure 11. Also shown are the s2 locations of probes A and B from Figure 11 (dashed lines), along with
the projections of W at these two locations onto the baseline aerofoil. b) Sufficient summary plot for the mass-averaged
loss coefficient across the s1/C1 = 1.5 line, with designs 1 and 2 highlighted, and the associated subspace vector Wint

projected onto the baseline aerofoil.

reducing subspace for Ȳp, Wint, is obtained directly from the ridge approximations for u(s1, s2) and Yp(s1, s2). The
resulting one dimensional sufficient summary plot for Ȳp is shown in Figure 12b. It is apparent that designs 1 and 2 lie
at either end of the design space with regards to their mass averaged loss, indicating that design 2 is objectively the
better design (with regards to loss). Similarly to before, in Figure 12b the elements of Wint are projected onto the
baseline aerofoil. This shows that the total loss can be reduced by deforming the suction surface outwards near the
leading edge, and inwards near to the trailing edge.

To understand why design 2 has a lower loss, a second law analysis can be performed. Herwig and Schmandt [56] show
that the overall entropy generation rate

S′ =
ρ(ν + νt)

T

(
∂ui
∂sj

+
∂uj
∂si

)
∂ui
∂sj

, (21)

can be used to understand the sources of drag or pressure loss within a flow. The contours of S′ in Figure 13 show that,
at α = 10◦, the majority of the entropy generation comes from the suction surface boundary layer and the wake region6.
In Figure 13 the delta between the y−averaged entropy generation for design 2 and the baseline design (WTx = 0) is
shown. Deforming the suction surface outwards near the leading edge, and flattening the aft portion (see Fig. 12b),
appears to increase entropy generation over the first quarter of the suction surface. But, this is offset by a reduction in
entropy generation in the wake and leading edge stagnation region, leading to a net decrease in the entropy generation.
Whilst an experienced aerodynamicist may have foreseen this conclusion, the present example serves to illustrate the
potential of an easily interpretable surrogate model which can be readily integrated to obtain global quantities.

4.5 Exploiting Spatial Correlation

Up to this point, flowfield predictions have been made using ridge approximations at every grid point. For larger grids,
such as three dimensional ones, obtaining N number of ridge approximations might be computationally intractable.
Taking a similar approach to how the CNN takes advantage of spatial coherence in the flowfield, the method outlined in
Section 2.4 explots spatial correlations to reduce the number of ridge approximations required. In Figure 14, ridge
approximations are obtained for J = 1000 randomly subsampled points (a sampling rate of J/N = 3.5%). Since the
baseline mesh has a high mesh density near the aerofoil (where the gradients are high), the subsampled points are also
clustered near to the aerofoil, which is desirable. The covariance matrixK, computed on the training data, is then used
to upsample the ridge approximations at the subsampled points back to the remaining N − J points.

The colouring of the subsampled points in Figure 14 shows that there are a small number of points with poor quality
ridge approximations. Preliminary work[40] showed that these poor quality approximations can cause spurious noise in
the flowfield estimates when upsampled. As discussed in Section 2.4, the training R2 score can be used as a heuristic to

6Decomposing Equation 21 into entropy generation due to laminar viscosity ν, and that due to turbulent viscosity νt, shows that
laminar irreversibilities dominate over the aerofoil surfaces, while turbulent mixing dominates in the wake.
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Figure 13: Contours of total entropy generation rate, S′, for design 2 (see Figs. 11- 12), and axial profile of the
difference in y-averaged generation rate between design 2 and the baseline design. The areas under the profile at various
locations are also shown. The units of S′ are Wm−3K−1.

Figure 14: Flowfield estimate of axial velocity, u/U∞, obtained by upsampling ridge approximations at J = 1000
randomly subsampled points. The aerofoil is from the test set, and the angle of incidence is α∞ = 10◦. Colour contours
show upsampled ridge approximations, while the iso-lines show the true CFD solution. The subsampled points are
coloured by the mean R2 score of their ridge approximations over the training data.

measure the quality of each ridge. Ridges with R2 < 0.6 are ignored during upsampling, with their grid points added
back into theN−J set of points. As seen in Figure 14, this strategy results in qualitatively accurate flowfield predictions
using ridge approximations at only 3.5% of the grid points, reducing the training time by a factor of approximately 29.

5 Test case 2: Varying Freestream Conditions for a Transonic Wing

Following on from the success of the first test case, we now turn to the transonic wing test case described in Section 3.1.2
in order to expose the limitations of polynomial ridge functions. Here the geometry, represented by x ∈ Rb, is fixed.
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However, the boundary conditions, represented by v ∈ Rb, are varied. The transonic nature of the flow, and the
possibility of extrapolating beyond the training dataset, make this test case particularly challenging. The input vector
v only consists of two dimensions in this case, Ma∞ and α∞. We could once again obtain one dimensional ridge
functions. However, two dimensional ridge functions are still simple to visualise. Considering a ridge function of the
form

f(v) ≈ g(W Tv) where W ∈ Rb×n and v ∈ Rb, (22)

we set W = I (the identity matrix), resulting in two dimensional ridge functions (n = b).

5.1 Interpolation versus extrapolation

In this case, the behaviour of the ridge functions as we extrapolate away from the training boundary conditions is
important. To explore this, polynomial ridge functions are trained on the Mtrain = 36 point DoE shown in the inset of
Figure 4. The transonic nature of these flows results in a noticeable step change in the flow behaviour as the freestream
Mach number increases, and at least fifth degree polynomials are found to be necessary to properly capture the surface
Mach number’s response. The two dimensional ridge functions are used to estimate the Mach number on the wing
surface at the s3/S = 0.2 span-wise slice highlighted in Figure 4, with the estimates for two different DoE points from
the test set shown in Figures 15a and 15b. The corresponding two dimensional ridges for the locations labelled A and B
are then visualised in Figures 15c and 15d. From these visualisations it is clear that DoE point 1 lies within the training
distribution, hence the it’s predictions (Fig. 15a) can be considered to be interpolations. In this case, the predicted Mach
number distribution agrees well with the true distribution.

a) DoE point 1: Ma∞ = 1.02, α∞ = 5.14◦ b) DoE point 2: Ma∞ = 0.72, α∞ = −1.45◦

c) Ridge at location A d) Ridge at location B

Figure 15: Polynomial ridge approximations for Mach number on the surface of the transonic wing at the s3/S = 0.2
span-wise slice. The predicted Mach distributions for two DoE points from the test set are shown in a) and b), while the
corresponding ridges for two s1/C1 locations are visualised in c) and d). The two DoE points are also labelled in c) and
d).
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Moving on to DoE point 2, here the ridge approximations must extrapolate away from the flow conditions seen during
training. Unsurprisingly, the predicted distribution in Figure 15b agrees less well with the true distribution in this case,
especially on the aft portion of the wing. This highlights a note of caution regarding polynomial ridge functions; as with
many function approximation techniques, caution must be taken when using the underlying polynomials to extrapolate
beyond the training data. If such a task is routinely necessary, it is possible to replace the polynomials with other classes
of models with more stable behaviour under extrapolation, such as piecewise polynomials (splines) or kernel regressors.
However, we shall leave this as a topic of future work.

5.2 Three-dimensional flowfield predictions

When extending the framework to three dimensional flowfields, computational efficiency is crucial. To achieve a
surrogate model for the full flowfield the subsampling and upsampling strategy is used once again. Ridge functions are
fitted at the J = 5000 randomly sampled points (a sampling rate of 4.6%), with a covariance matrix used to upsample
the ridge approximations to full three dimensional flowfield estimates. A slice of a flowfield estimate for a test DoE
point is shown in Figure 16. Comparing the colour contours and iso-lines, the prediction appears to be reasonable, with
only a slight disagreement on the aft section of the suction surface.

Figure 16: A span-wise slice (s3/S = 0.2) of the upsampled transonic wing flowfield estimates of Mach number, for a
DoE point from the test set, with Ma∞ = 0.77 and α∞ = 4.6◦. The J = 5000 randomly subsampled points are shown
in green. The inset figure shows the difference in normalised MAE between the subsampled-upsampled estimates, and
the estimates with no subsampling (J = N ), for different sampling rates.

The above result suggests the subsampling strategy is effective for three dimensional flows in addition to two dimensional
ones. The inset figure within Figure 16 shows the effect of sampling rate on the prediction error. For the present case,
sampling rates of lower than ≈ 4% lead to significantly increased errors. Nevertheless, sampling rates of 4-10% still
allow for significant computational cost savings.

6 Conclusions

This paper exposes the idea of using spatially correlated ridge functions to rapidly estimate flowfields. The resulting
data-driven framework could be trained on existing CFD data where available, or it could be integrated within a wider
design of experiment, with new CFD data generated specifically for training. Once trained, the framework provides
rapid flowfield predictions, which can be used for design space exploration, design optimisation tasks, performance
predictions, or even to guide CFD mesh design.
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On the subsonic aerofoil test case, comparisons with the state-of-the-art convolutional neural network (CNN) suggest
that the ridge function framework is able to achieve competitive predictive accuracy on unseen aerofoil designs. In
addition to serving as a surrogate model, the learned ridge functions can aid understanding of the existing training data.
Sufficient summary plots can be viewed for any given point. The reduced dimensional nature of these plots lends itself
to easy visualisation, allowing for easy comparison between designs, and new physical insights. Furthermore, the local
ridge functions can be integrated to obtain new ridge functions for integral quantities such as a loss or drag coefficient.
This allows new interpretable surrogate models for integral quantities to be generated on demand, without the need for
further pre-processing of the CFD data. Such capability is advantageous in scenarios where the long-term storage of the
full CFD dataset is problematic. The ridge functions can also provide insensitivity information, informing us how a
design can be altered without influencing the flow at a given location.

The independent nature of each ridge function means that their training can be viewed as an embarrassingly parallel
task. This makes the ridge function framework trivial to implement in a parallel fashion, allowing for excellent scaling
with problem size. However, for larger problems, computing ridge functions for every single grid point is undesirable.
Instead, ridge functions are obtained at a much smaller number of randomly subsampled points. The flow physics
encoded within covariance matrices, computed from the training data, can be used to upsample the ridge functions’
predictions back to the rest of the flowfield. The computation of the covariance matrices, and the subsequent use of
them, involves a variety of linear algebra operations which can be implemented efficiently. For the three dimensional
transonic wing test case, sampling rates around 5% are achieved with minimal additional errors, allowing for significant
reductions in training time.

The transonic wing test case demonstrates how ridge functions can be used to estimate flowfields with varying boundary
conditions. In such cases, there is a danger of extrapolating too far from the training data, and the underlying
polynomials’ predictions can not be trusted here. If extrapolation is important, there is scope to replace the polynomials
used in this work with alternative models. In addition to exploring this further, a worthwhile area of future work
would be to combine the approaches used in the two test cases, incorporating geometric and boundary condition input
parameters together.
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A Convolutional Neural Network Setup

This appendix provides more details on the convolutional neural network setup in Figure 5. This network is a modified
form of that proposed by Thuerey et al. [14], which is based upon the U-Net architecture first proposed by Ronneberger
et al. [49]. Since the boundary conditions are scalar values, it might appear wasteful to repeat the values over the
entireity of the 128 × 128 × 3 boundary condition input channels, and some CNN flowfield prediction frameworks
such as those of Bhatnagar et al. [13] inject the scalar values into the feature vector instead. However, Thuerey et al.
[14] claim that, while the network would eventually propagate the boundary information via the convolutional bow tie
structure, specifying the redundant boundary condition information with skip connections allows for a more efficient
training process.

The general design features of the convolutional blocks from Thuerey et al. [14] are retained; in the encoder leaky ReLU
activations functions are chosen to avoid the dying ReLU problem[57], whilst standard ReLU functions are selected for
the decoder, both with a slope of 0.2. Convolutional filter kernels of various sizes and strides are then used for encoding
and decoding (See Fig. 5), with nearest neighbour upsampling followed by a regular convolution for the decoder blocks.
To help mitigate overfitting, batch normalisation is used in all the blocks except for the first and last ones (1c and 1d), in
addition to having a slight dropout rate of 0.01 for all layers.

A.1 Learning process

To obtain the the weights (and biases) of the network, the learning process uses the Adam optimiser[58] to minimise the
Huber loss function given in (16), with the loss averaged over all Mtrain number of training designs and N = 1282
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grid points. A learning rate of 4× 10−4 is used, which is then reduced by a factor of ten after 500 epochs, and a batch
size of ten is chosen.

Figure 17: Convergence history for the 488k parameter CNN trained on the α∞ = 10◦ dataset, with Mtrain = 500.

The learning curve for the 488k parameter network is plotted in Figure 17; the convergence behaviour appears to be
satisfactory, and the small difference between train and test loss suggests the network isn’t suffering from excessive
overfitting. Similar behaviour is observed for the other network sizes explored in this paper.

A.2 Effect of network size

To allow for a fair comparison between the ridge function framework and the CNN, the performance for various
size/complexity networks is examined in order to find an optimal size. The network’s size is altered by changing the
number of channels, with the number of channels in the ith layer given by Ci = 2eci. The constants ci are defined
in Table 2, and the network’s size is varied by adjusting the exponent e, with values of e = {2, 3, 4, 5} tested. The
variation in performace

Table 2: Multiplier c used to set the number of channels in each layer of the convolutional neural network. The number
of channels in the ith layer is given by Ci = 2eci, where the exponent e is a scalar parameter used to set the model
complexity.

Encoder Layer 1c 2c 3c 4c 5c 6c 7c
ci 1 2 2 4 8 8 8

Decoder Layer 1d 2d 3d 4d 5d 6d 7d
ci 8 16 16 8 4 4 4

The normalised MAE, defined in (17), is measured on the training and test sets for the four different network sizes,
with the results plotted in Figure 18. Generally, the larger networks achieve lower predictive errors. However, this is at
the cost of longer training times (Fig. 18d), with the 1.94M parameter network taking up to 80 minutes to train. The
larger networks also exhibit more stable predictions, with less variance in their MAE scores across the three train/test
folds. To achieve a reasonable compromise between accuracy and training cost, the 488k parameter is chosen as the
benchmark for comparisons elsewhere in this paper. A similar pattern between MAE, training times, and the number of
training designs is also observed. The chosen value of Mtrain = 500 is seen to offer a good compromise between low
MAE scores and short training time.

B Integrating Ridge Functions

This appendix presents a procedure for identifying a dimension reducing subspace for the mass-averaged pressure loss
coefficient Ȳp, defined in (20). A more general treatment on the subspaces of an integral of a scalar field quantity
can be found in Wong et al. [24]. For simplicity, we stick to a two dimensional domain, but the approach is readily
generalisable to three dimensions. Recalling (20), we wish to obtain the mass-averaged loss coefficient Yp, at a given
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a) MAE of Cp predictions b) MAE of u/U∞ predictions

c) MAE of νt/ν∞ predictions d) Training time

Figure 18: Prediction errors and training time for different size convolutional neural networks, for the α∞ = 10◦

dataset. Solid lines indicate test errors, and dashed lines training errors. Results are averaged over three train/test folds,
and the error bars denote the standard deviation in MAEσ across these folds. The size of the network is altered by
adjusting the number of channels via the exponent e.

axial chord location Cx
Ȳp =

1

ṁ

∫
C1

u(s1, s2)Yp(s1, s2)ds2, (23)

where the mass flow rate across the plane, ṁ =
∫
C1
u(s1, s2)ds2, is taken to be a constant here7. The local axial

velocity and loss coefficient are approximated with two ridge approximations
u(s1, s2) ≈ gs1,s2

(
WT

s1,s2x
)

Yp(s1, s2) ≈ hx,y
(
UT
s1,s2x

)
.

(24)

Here the input vector x ∈ Rd has its usual meaning, whilst WT ∈ Rnw×d and UT ∈ Rnu×d denote the subspaces for
axial velocity and loss coefficient respectively, where naturally nw � d and nu � d. Substituting (24) into (23) yields

Ȳp = ρ∞

∫
C1

gs1,s2
(
WT

s1,s2x
)
hs1,s2

(
UT
s1,s2x

)
ds2. (25)

To identify the dimension reducing subspace for Ȳp with respect to its constituent input parameters x, we need to
compute the averaged outer product of its gradient [39] – a covariance matrix given by

C =

∫
Rd

(
∇xȲp (x)

) (
∇xȲp (x)

)T
ω(x)dx, (26)

where ω(x) denotes the distribution associated with the input parameters x. Assuming the existence of a design of
experiment with M distinct CFD evaluations for different input parametrisations, and taking ω(x) to be a uniform
distribution here, we can approximate C with its finite sample estimate

C ≈ 1

M

M∑
m=1

(
∇xȲp (xm)

) (
∇xȲp (xm)

)T
. (27)

7The standard deviation of ṁ across the C1 plane is less than 0.2% of the mean.
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The gradient evaluations can be written as

∇xȲp (xm) = ρ∞

∫
Rd

∂

∂xm

[
gs1,s2

(
WT

s1,s2xm
)
hs1,s2

(
UT
s1,s2xm

)]
ds2

= ρ∞

∫
Rd

[Ws1,s2∇wgs1,s2 (wm)hs1,s2 (um) + Us1,s2∇uhs1,s2 (um) gs1,s2 (wm)] ds2,

(28)

where wm = WTxm and um = UTxm are the reduced dimensional co-ordinates for the mth design in the Yp(s1, s2)
and u(s1, s2) subspaces respectively. If we further assume that spatially, there are N nodes along which this integration
has to be performed, in which case we have the set

{gi, hi,Wi,Ui,∇wgi,∇uhi, }Ni=1 , (29)

we approximate

∇xȲp (xm) ≈ ρ∞
N∑
i=1

[Wi∇wgihi + Ui∇uhigi]ϕi (30)

where ϕi denotes appropriately selected quadrature weights depending on the spatial location of the nodal centres.
Plugging this into (27) yields

C ≈ E

(ρ∞ N∑
i=1

[Wi∇wgihi + Ui∇uhigi]ϕi

)(
ρ∞

N∑
k=1

[Wk∇wgkhk + Uk∇uhkgk]ϕk

)T
= ρ2∞

N∑
i=1

N∑
k=1

ϕiϕkE
[
hihkWi∇wgi∇wg

T
kW

T
k

]
+ ρ2∞

N∑
i=1

N∑
k=1

ϕiϕkE
[
higkWi∇wgi∇uh

T
kU

T
k

]
+

ρ2∞

N∑
i=1

N∑
k=1

ϕiϕkE
[
gihkUi∇uhi∇wg

T
kW

T
k

]
+ ρ2∞

N∑
i=1

N∑
k=1

ϕiϕkE
[
gigkUi∇uhi∇uh

T
kU

T
k

]
(31)

This equation is easy to implement, as long as the gradients ∇wg and ∇uh can be computed. When applying this
approach in Section 4.3, g and h are taken to be the underlying polynomials of the ridge function approximations, rather
than the posterior mean of the ridge kernels as is the case in the rest of the paper. This is done since the gradients
of orthogonal polynomials are readily available. Finally, an eigendecomposition of C is performed, and the leading
eigenvectors with the largest eigenvalues are chosen to form Wint, the dimension reducing subspace for Ȳp. In the
present case, the first eigenvalue was found to contribute 99.3% of the trace. Therefore, a one dimensional dimension
reducing subspace was deemed to be sufficient.
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