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Many industrial flows are turbulent in nature, and Reynolds-Averaged Navier-Stokes (RANS) based turbu-
lence models play an important role in the prediction of such flows. Many simplifying assumptions are made
in the development of a RANS model. These assumptions can lead to epistemic uncertainties which are still a
major obstacle for the predictive capability of RANS models. If experimental measurements or higher fidelity
simulation results are not available for comparison, it can be difficult to evaluate the accuracy of RANS predic-
tions. Recently, data-driven strategies have been proposed to either quantify model uncertainty [2], or improve
model accuracy [3]. Many of these strategies involve training supervised machine learning (ML) models on
high fidelity CFD data, such as that from large eddy simulations [1].

Ling and Templeton [4] proposed a technique whereby a machine learning classifier is trained to detect
whether a number of RANS modelling assumptions are broken. The classifier can then be used to predict re-
gions of high and low uncertainty in RANS simulations where corresponding high fidelity data is not available.
In the present work, the original technique is further refined, and applied to a number of flow configurations
such as a recent family of bumps dataset [5]. The non-dimensional “features" used by Ling and Templeton to
describe each flow to the ML model are revisited, with improvements made to ensure the ML classifier is more
generalisable to other flows. New error metrics are also proposed to allow for other areas of RANS modelling
uncertainty to be explored. Figure 1 shows a prediction made for one of the bump cases, with the region in red
being a region where the Boussinesq hypothesis used by many RANS models would be invalid due to the high
turbulent anisotropy.
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Figure 1: Regions in the flow over a bump [5] where the Boussinesq hypothesis is predicted to be invalid due
to significant turbulent anisotropy, predicted by a random forest classifier.

Within the ML community there is an increasing interest in interpretability. Indeed, a common criticism of
ML augmented RANS models is that they are a “black box", with the machine able to make accurate predictions
but not explain why it has made them. The proposed RANS error classifier is examined using recently proposed
ML interpretation methods such as individual conditional expectation [6] and Shapley additive explanations
(SHAP) [7] plots. These novel techniques provide global and local explanations of model predictions. A SHAP
summary plot, which summarises the global effect of each flow feature (the model inputs) on the turbulent



anisotropy metric (a model output), is shown in Figure 2. More detailed SHAP plots are discussed, such as
SHAP dependence and local force plots. Now, the proposed classifier can not only be used to predict regions
of uncertainty, but also to explain what physical flow features have caused this uncertainty. This brings with it
the possibility of using the classifier to aid in the further understanding and development of turbulence models,
in addition to its use as a tool in predicting “trust" regions in RANS simulations.
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Figure 2: A SHAP summary plot showing the impact of flow features on the turbulent anisotropy error metric
predicted in Figure 1.
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