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This paper presents an overview of the open-source code equadratures. While originally
developed to replicate polynomial chaos results seen in literature, it has since evolved to
touch upon multiple aspects of computational engineering and machine learning. Today, the
code uses orthogonal polynomial approximations to facilitate various parameter-based studies
including uncertainty quantification, sensitivity analysis, dimension reduction, and classification.
Additionally, it can address well-known limitations of polynomial approximations. These include
the ability to fit to high-dimensional problems without requiring large input-output data pairs,
and the ability to negotiate discontinues in any provided data. For the former, subspace-based
polynomial approximations are employed, while for the latter, a tree-based piecewise polynomial
hierarchy is adopted. Beyond this, ancillary topics such as coefficient computation, dealing
with correlated inputs, moment computation, and gradient enhancement are also discussed.
Following a deep-dive of the underpinning methods in the code, this paper details numerous
case studies—with a slant towards computational aerodynamic problems.

I. Introduction
For nearly five years now, equadratures [1], a pure python code, has been made openly available to the computational

methods community. Over the last two years alone, it has been downloaded well over 40,000 times, and is being used
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across industry, government, and academia. Today, equadratures is a model development platform facilitating explainable
and robust models that do not require large cloud infrastructure to train, unlike many deep learning frameworks. Models
built in equadratures can be used for a wide range of tasks spanning uncertainty quantification, sensitivity analysis,
numerical integration, optimisation, clustering, parameter-space exploration, dimension reduction, surrogate modelling,
and even digital twinning.

When originally developed five years ago, equadratures (known then as Effective Quadratures) was purpose-built for
facilitating non-intrusive uncertainty quantification through polynomial chaos expansions [2–4]. The unique selling
point of the code was an adoption of least squares- and compressed sensing-based approaches for estimating polynomial
coefficients, rather than opting for more conventional tensor and sparse grid strategies. This permitted greater anisotropy
in the selection of basis functions used in the polynomial expansions, as well as a reduction in the number of samples
required with rising problem dimensionality. The overall workflow can best be summarised in the steps below.

User prescribes input marginal distributions for each uncertainty.
⇓

Least squares or compressed sensing framework is used to generate a design of experiment.
⇓

Model is evaluated at the design of experiment.
⇓

Polynomial coefficients are computed.
⇓

Moments and sensitivities (Sobol’ indices) are determined from the coefficients (see [5, 6]).

This shift towards least squares and compressed sensing is well captured in literature [7, 8] as are the different strategies
for arriving at well conditioned matrices and sampling distributions [9–11]. There is a clear trend to opt for random
sampling techniques paired with well-worn algorithms for identifying well-conditioned submatrices, e.g., QR with
column pivoting and SVD-based subset selection [12], among other convex optimisation rooted techniques (see [13] for
a comparison).

Over the past few years, equadratures has grown in capability, ingesting and synthesising key advances in literature
to accelerate application impact. One of the most fruitful advances have been in parameter-space dimension reduction,
where the central idea is to ascertain whether a function admits a dimension reducing subspace—i.e., a few linear
combination of all the variables which may be used for function approximation. While the idea is itself not unprecedented
[14], it has experienced a resurgence owing to a prodigious number of publications under the handles of active subspaces
[15], sufficient dimension reduction [16] and ridge functions [17] (to name a few). These works have been championed
by researchers spanning both academia and industry—with impactful use cases [18–21] that likely serve as a precursor
to further advances within the areas of function approximation. A practical outlook on the success of data-driven
dimension reduction in computational science may be enforced by the notion that we trust our models within a relatively
small parameter space and conduct our parameter studies accordingly. Thus, function values around a notional centroid
may be well-approximated via linear projections of neighboring parameter values.

Beyond dimension reduction, ancillary progress on robust methods for dealing with correlations in the inputs,
i.e., identifying independent polynomial basis on correlated spaces [22] has been important for driving forth the
uptake of polynomial-based methods and thus equadratures. This builds upon prior work with Nataf and Rosenblatt
transformations [23]. These advances have permitted the construction of stable global polynomials across both high
order and high dimensional problems. This naturally leads one to consider leveraging polynomials across a wider range
of challenges including optimisation, multi-fidelity modelling, spatial-field modelling and dimension reduction.

It is important to remark that global smoothness and continuity are certainly not guaranteed for all problems. Thus,
strategies to fit multiple polynomials over a domain are extremely useful, especially when working with problems
that are characterised by a relatively large parameter space. This may take the form of trust region methods [24] or
tree-based methods [25], where polynomials need to be defined over a subdomain in a recursive manner—based on
certain approximation error criterion. Within equadratures these ideas have found utility in polynomial regression
tree models and trust-region optimisation methods. In fact for the latter, if one further assumes that a subspace-based
dimension reduction representation exists, then from the perspective of optimiser, as the trust region migrates through a
larger parameter space, finding such projections iteratively may be incredibly valuable, both from the perspectives of
convergence rate and optimality (see [26]).

The rather terse review above sets the stage for our paper, which has two main goals. First, we want to communicate
how the building blocks in equadratures—i.e., classes and functions—are aligned with the underpinning mathematics

2



these utilities encapsulate, providing a rich prototyping framework for novice users and experienced practitioners.
Second, we wish to demonstrate how problems well-beyond the standard uncertainty quantification mould can be
adequately addressed by using equadratures. The remainder of this paper is structured as follows. The remainder of this
paper is structured as follows. In II we introduce the core building blocks in equadratures. This is followed by III
where we outline strategies for computing coefficients, with gradient enahncement, and under correlations. Section IV
details how equadratures exploits parameter subspace-based dimension reduction approaches. This may be used to
efficiently compute moments and sensitivities V particularly for high dimensional problems. Techniques for constructing
piecewise polynomials using trees is presented in VII, followed by case studies in VIII.

II. Parameter, Basis, and Polynomials
The three key fundamental building blocks in equadratures are classes by the names of Parameter, Basis and

Polynomial. In this section we detail their mathematical definitions and the role their namesake classes play in
equadratures.

A. Parameter
Define a scalar-valued quantity of interest (qoi) as 𝑓 = 𝑓 (𝒙) where 𝒙 = (𝑥 (1) , . . . , 𝑥 (𝑑) ) is a 𝑑-dimensional vector of
mutually independent variables. Thus the function 𝑓 is a map from R𝑑 → R. Here, each parameter 𝑥 (𝑖) belongs to a
domain X (𝑖) ∈ R, that can be an infinite interval (−∞,∞), a semi-infinite interval (−∞, 𝑏] or [𝑎,∞), or a closed (finite)
interval [𝑎, 𝑏]. This interval represents the support of each parameter. We generally consider the input domain to be a
non-compact hypercube decomposed as a Cartesian product of the form X = X (1) × · · · × X (𝑑) .

Along each interval, consider a positive weight function 𝜌𝑖
(
𝑥 (𝑖)

)
> 0 over the domain X (𝑖) such that∫

X𝑖

(
𝑥 (𝑖)

) 𝑘
𝜌𝑖

(
𝑥 (𝑖)

)
𝑑𝑥 (𝑖) < ∞, where

∫
X𝑖

𝜌𝑖

(
𝑥 (𝑖)

)
𝑑𝑥 (𝑖) = 1, (1)

for 𝑘 = 1, 2, . . ., and where 𝑖 = 1, . . . , 𝑑. The second expression in (1) naturally leads to the interpretation that 𝜌𝑖
(
𝑥 (𝑖)

)
is a probability density function over the domain X (𝑖) . In making the assumption that 𝒙 is a vector of independent
variables, the joint density 𝝆 of all the probability distributions associated with 𝒙 is given by

𝝆(𝒙) =
𝑑∏
𝑖=1

𝜌𝑖

(
𝑥 (𝑖)

)
, (2)

defined on R𝑑; should the variables be correlated then (2) no longer holds.

B. Basis
A multi-index is a set of indices that enumerates composite univariate polynomial orders that are involved in forming
the multivariate basis. As we intend to approximate 𝑓 via a finite number of polynomials 𝝓𝒊 , we restrict indices 𝒊 to lie
in a finite multi-index set I. Whilst considerable flexibility in specifying these multi-index sets exists, well-known I
include tensor product index sets, total order index sets, Euclidean degree spaces [27], and hyperbolic spaces [28]. Each
of these index sets in 𝑑 dimensions is well-defined given a fixed 𝑘 ∈ N0, which indicates the maximum polynomial
degree associated to these sets. Tensor product index sets are characterised by

max
𝑘
𝑖𝑘 ≤ 𝑘, (3)

and have a cardinality (number of elements) equal to (𝑘 + 1)𝑑 . Total order index sets contain multi-indices satisfying

𝑑∑︁
𝑗=1
𝑖 𝑗 ≤ 𝑘 (4)

They effectively disregard some higher order interactions between dimensions present in tensorised spaces, and a total
order index set I has cardinality

|I | =
(
𝑘 + 𝑑
𝑘

)
. (5)
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(a) (b) (c)

Fig. 1 Multi-indices for 𝑑 = 2 with a maximum univariate degree of 14 for: (a) tensor order; (b) total order; (c)
hyperbolic space.

For a hyperbolic space index set, ©­«
𝑑∑︁
𝑗=1
𝑖
𝑞

𝑗

ª®¬
1/𝑞

≤ 𝑘, (6)

where 𝑞 is a user-defined constant that can be varied from 0.2 to 1.0. When this parameter is set to unity 𝑞 = 1, the
hyperbolic index space is equivalent to a total order index space. For values less than unity higher-order interactions
terms are eliminated as discussed before [28].

For illustrative purposes, plots of the main multi-index sets associated with 𝑑 = 2 and with a maximum univariate
degree of 14 are shown in Figure 1. Of particular importance is the growth and interaction of the higher order terms. In
total order and hyperbolic spaces, higher order interaction terms are significantly reduced. For many physical systems,
these type of sparser basis have found utility as lower order interactions are often far more dominant. Another important
consideration when choosing a multi-index is the level of anisotropy along each dimension. For instance, one can have
different maximum degrees in each direction.

C. Polynomial
Assume that 𝑓 is sufficiently smooth and continuous such that it can be approximated by a global polynomial 𝑝

𝑓 (𝒙) ≈ 𝑝 (𝒙)

=

𝑁∑︁
𝑗=1
𝛼 𝑗𝝓 𝑗 (𝒙) ,

= 𝑷𝜶

(7)

defined as a weighted sum of 𝑁 known basis polynomials, where

𝝓 𝑗 (𝒙) =
𝑑∏

𝑘=1
𝜙
(𝑘)
𝑗𝑘

(
𝑥 (𝑘)

)
, ( 𝑗1, . . . , 𝑗𝑑) ∈ N𝑑

0 , (8)

and where [𝑷]𝑖, 𝑗 = 𝝓 𝑗 (𝒙𝑖) for some discretised value 𝒙𝑖 ∈ X. Note that the polynomials 𝝓 𝑗 defined in this way are
mutually orthogonal in 𝐿2 weighted by 𝝆. More specifically, we can state that these composite univariate polynomials
must satisfy ∫

X𝑘

𝜙𝑔

(
𝑥 (𝑘)

)
𝜙ℎ

(
𝑥 (𝑖)

)
𝜌𝑘

(
𝑥 (𝑘)

)
𝑑𝑥 (𝑘) = 𝛿𝑔ℎ, (9)

where 𝛿𝑔ℎ is the Kronecker delta; subscripts 𝑔 and ℎ denote polynomial orders. The above expression crystallizes the
choice of the orthogonal polynomial family based on the choice of the weight function 𝜌𝑘

(
𝑥 (𝑘)

)
. For instance if 𝜌𝑘

(
𝑥 (𝑘)

)
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were the uniform distribution with X (𝑘) ∈ [𝑎, 𝑏] then
{
𝜙 𝑗

(
𝑥 (𝑘)

)}∞
𝑗=0 would correspond to Legendre polynomials; for

Gaussian weights one would use Hermite polynomials, and so on. Details about these weight-polynomial pairs can be
found in [2]. Succinctly stated, choosing the correct weight-polynomial pairs will lead to an exponential convergence in
(7) thereby reducing the number of terms 𝑁 required. As a consequence, this will also reduce the number of model
evaluations needed to estimate the unknown coefficients (𝛼1, . . . , 𝛼𝑁 ).

Before moving on to the computation of the coefficients, a few words on the computation of the individual univariate
orthogonal polynomials 𝜙 𝑗

(
𝑥 (𝑘)

)
are in order. Orthogonal polynomials of any order may be given by a three-term

recurrence relation

𝛽 𝑗+1𝜙 𝑗+1

(
𝑥 (𝑘)

)
=

(
𝑥 (𝑘) − 𝛼 𝑗

)
𝜙 𝑗

(
𝑥 (𝑘)

)
− 𝛽 𝑗𝜙 𝑗−1

(
𝑥 (𝑘)

)
, for 𝑗 = 0, 1, 2, 3, . . . (10)

where
(
𝛼 𝑗 , 𝛽 𝑗

)
are a set of recurrence coefficients explicitly known, dependent upon 𝜌𝑘

(
𝑥 (𝑘)

)
[29]. A four-term

recurrence formula can also be derived for the derivatives of orthogonal polynomials.

III. Coefficient Computation
These coefficients are defined to be

𝛼 𝑗 =

∫
X
𝑓 (𝒙) 𝝓 𝑗 (𝒙) 𝝆 (𝒙) 𝑑𝒙 (11)

which may be interpreted as the inner product of the function over the 𝑗-th polynomial term. The overarching goal in
this section will be the utilisation of least squares and compressed sensing rooted methods for approximating (11) via

𝛼 𝑗 ≈
𝑀∑︁
𝑖=1

𝑓 (𝝌𝑖) 𝝓 𝑗 (𝝌𝑖) 𝜔𝑖 (12)

using points {𝝌𝑖}𝑀𝑖=1 ∈ X, and a set of corresponding weights {𝜔𝑖}𝑀𝑖=1 defined via

𝜔𝑖 =
𝜔̃𝑖∑𝑀
𝑖=1 𝜔̃𝑖

, where 𝜔̃𝑖 =
1∑𝑁

𝑗=1 𝝓 𝑗 (𝝌𝑖)2 . (13)

Note that if the points {𝝌𝑖}𝑀𝑖=1 ∈ X selected are quadrature points, then the weights {𝜔𝑖}𝑀𝑖=1 will be equivalent to the
corresponding quadrature weights. To solve (12) for all 𝑗’s, we assume access to input-output model evaluations of the
form {𝝌𝑖 , 𝑓𝑖}𝑀𝑖=1.

In equadratures coefficient computation strategies are passed as string input methods to the Polynomial class and
include least-squares, compressed-sensing and relevance-vector-machine.

A. Least squares
It will be useful to think of techniques for estimating the coefficients 𝜶 = (𝛼1, . . . , 𝛼𝑁 )𝑇 in terms of matrix-vector
operations. Define 𝑨 ∈ R𝑀×𝑁 , formed by evaluating multivariate orthogonal polynomials at a set of points 𝝌𝒊 weighted
by 𝝎𝒊

[𝑨]𝑖, 𝑗 = 𝝓 𝑗 (𝝌𝑖)
√
𝜔𝑖 , (14)

with 𝑀 quadrature points and 𝑁 polynomials. We also define a Gram matrix 𝑮 = 𝑨𝑇 𝑨, where each element is
effectively given by

[𝑮] 𝑝,𝑞 =

𝑀∑︁
𝑖=1

𝝓𝒑 (𝝌𝑖) 𝝓𝒒 (𝝌𝑖)𝝎𝑖 ≈
∫

𝝓𝒑 (𝒙) 𝝓𝒒 (𝒙) 𝝆 (𝒙) 𝑑𝒙 = 𝛿𝒑𝒒 . (15)

Should the points and weights be appropriately selected, then one would expect 𝑮 to be very close to the 𝑁 × 𝑁 identity
matrix. In fact if the correct numerical quadrature rule—correct in the degree of exactness sense—is chosen, then 𝑮
will be equivalent to the identity matrix. There is a direct connection between this fact and the solution to the least
squares problem

minimize
𝜶∈R𝑁

∥𝑨𝜶 − b∥2 , (16)
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where entries in b ∈ R𝑀 are weighted evaluations of 𝑓 at the chosen points, i.e., b(𝑖) =
√
𝜔𝑖 𝑓 (𝝌𝑖). Assuming that 𝑨 is

not rank deficient, the solution to (16) is given by the normal equations 𝜶∗ =
(
𝑨𝑇 𝑨

)−1
𝑨𝑇b = 𝑮−1𝑨𝑇b. A few remarks

regarding this expression are in order. First, if the Gram matrix 𝑮 is not the identity, then we will likely encounter
aliasing errors when solving for the coefficients 𝜶. Second, to obtain solutions to this least squares problem we require
𝑨 to be a tall matrix, or at the very least a square matrix. The key to identifying well-conditioned 𝑨 when solving for
the coefficients is a suitable selection of points and weights {𝝌𝑖 , 𝜔𝑖}𝑀𝑖=1.

In [13] (and references therein) the authors breakdown the problem into two components. The first, is to generate a
suitable sample of potential points based on the measure 𝝆 and the choice of the basis I. The standard approach is to
sample from the measure 𝝆 itself, however this can be suboptimal, as the convergence rate is rather slow in terms of the
number of samples required. Another strategy, that both in theory and practice offers a better set of samples is based on
the induced distribution 𝝆𝑉 . One generates independent identically distributed (iid) samples from this distribution,
given by

𝝆𝑉 (𝒙) =
𝑛∑︁
𝑖=1

𝝓2
𝑖 (𝒙) 𝝆 (𝒙) , (17)

and then uses the modified weights

𝜔𝑉, 𝑗 =
𝝆

𝝆𝑉

(
𝝌 𝑗

)
=

1∑𝑛
𝑖=1 𝝓

2
𝑖

(
𝝌 𝑗

) . (18)

The challenge with this strategy is that the precise analytical forms for the induced distribution are not known for all
𝝆 and multi-index sets I (see [30] and [31] for further details). We remark here that these sampling strategies are
inherently non-deterministic. A deterministic sampling recipe can be found in the work of [4], where the authors
subsample points from a tensor grid to approximate the coefficients associated with a total order basis. The idea is
to construct 𝑨 such that 𝑀 >> 𝑁 and then prune down the number of samples using an optimization strategy. One
well-known optimisation heuristic based on QR column pivoting seeks to subselect rows of 𝑨 that best reduce the
condition number. Other optimization strategies based on Newton’s method and linear programming have also been
discussed in literature, such as [32], [13] and [33].

To illustrate some of the benefits in moving away from standard quadrature rules, consider the point distributions
𝝃 and coefficient values 𝜶 shown in Figure 2 for the function 𝑓 (𝒙) = exp

(
𝑥 (1) + 3𝑥 (2)

)
. These results are generated

with a maximal order of 16 along both dimensions; Figure 2(a) is a tensor grid, (c) is a sparse grid with an exponential
growth rule and a level of 4, (e) represents points that were subsampled from the tensor grid using QR column pivoting
with a total order basis, while (g) is subsampled with a hyperbolic basis. The number of points in these figures are 289,
147, 153 and 84 respectively. Subplots (b), (d), (f) and (h) show the coefficient values in a base-10 logarithm scale.
While the top row of this figure represents the results of numerical integration, the bottom row shows the results with
least squares—offering far greater freedom in the basis terms selected, and in this case, with the same number of points
as basis terms.

B. Compressed sensing strategies
Least squares solutions place a restriction on the polynomial evaluation matrix 𝑨: there must be at least as many rows as
columns. In this section, we focus on heuristics that permit bypassing this restriction. Under this condition, the possible
solutions to 𝑨𝜶 = b form an affine space, all of which are exactly accurate solutions when evaluated with the mean
squared error. Thus, from this space, one must select the most plausible solution with some other criterion or constraint.

Assuming that the solution is sparse, i.e. with many zeros or near-zeros, it can be shown that heuristics based on
ℓ1-minimisation can be used to recover solutions given structural assumptions on the matrix 𝑨, such as incoherence,
which enforces conditions on the points 𝝌. Using this approach, the sparsest compatible solution is found by solving the
optimization problem known as the basis pursuit denoising problem ([34])

minimise
𝜶∈R𝑁

∥𝜶∥1

subject to ∥𝑨𝜶 − b∥2 ≤ 𝜖,
(19)

where 𝜖 is small positive value representing truncation error of the polynomial series and/or noise in observation data
(see [35]). Second order conic program strategies for solving (19) are well-known; they lend themselves to solutions via
interior point methods [36, 37].
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2 Sample point distributions and coefficient estimates for: (a, b) tensor grid with maximal order of 16; (b,
c) sparse grid with a level of 4 and an exponential growth rule; (e, f) subsampled points with a total order basis;
(g, h) subsampled points with a hyperbolic basis.

As with least squares strategies, a key question that arises pertains to the sampling strategy for constructing 𝑨.
While compressed sensing strategies typically perform well with random sampling, there has been much work on
devising sampling methods. However, unlike least squares techniques where a single measure that can quantify the
overall quality of a matrix can be devised (e.g., the condition number), establishing such an easily computable metric
remains a challenge [38]. We omit a theoretical exposition of the various sampling strategies for and refer the reader to
Tang and Iaccarino [39] and Hampton and Doostan [35].

In practice, the use of ℓ1-minimisation methods can give slow performance. The main bottleneck to the method
is the determination of the unknown 𝜖 . Depending on the scale of the problem, it can take a wide range of values.
Even when the output is normalized, several plausible values of 𝜖 still need to be tested with trial-and-error. This in
turn implies that multiple optimization problems need to be solved for one regression task. Below we describe an
alternative approach for underdetermined sparse regression that obviates the need for hyperparameter searching with
cross validation, namely relevance vector machines (RVMs).

The RVM is first proposed by Tipping [40] and introduced as a Bayesian method for compressed sensing [41]. This
method considers the task of coefficient computation in a probabilistic framework. The regression model is formulated
using a generative process with Gaussian noise 𝜀,

𝑓 (𝒙) ≈ 𝜶𝑇𝝓(x) + 𝜀 = 𝑦,

where 𝜀 ∼ N(0, 𝜎2). The likelihood of the data is then a Gaussian,

P(y | 𝜶,X, 𝜎2) = N(y | 𝑨𝜶, 𝜎2I).

The prior placed on the coefficients is a zero mean Gaussian, where the variances for each coefficient is specified with a
hyperparameter 𝜅𝑖 .

P(𝜶 | 𝜿) =
𝑃∏
𝑖=1

N(𝛼𝑖 | 0, 𝜅−1)

The hyperparameters 𝜿 and 𝛽 := 𝜎−2 are in turn specified by another prior distribution in the form of Gamma distributions

P(𝜿) =
𝑃∏
𝑖=1

Γ(𝜅 | 𝑎, 𝑏)

7



P(𝛽) = Γ(𝛽 | 𝑑, 𝑒)

To simplify our expressions, we set 𝑎 = 𝑏 = 𝑑 = 𝑒 = 0 for an uninformative prior for the hyperparameters. Using Bayes’
rule, The posterior distribution of all parameters is

P(𝜶, 𝜿, 𝛽 | y) = P(y | 𝜶, 𝜿, 𝛽)P(𝜶, 𝜿, 𝛽)
P(y) .

For a full Bayesian treatment (e.g. getting the predictive mean and variance, not simply the maximum a posteriori
estimator), the normalising term P(y) =

∫
P(y | 𝜶, 𝜿, 𝛽) P(𝜶, 𝜿, 𝛽) 𝑑𝜶 𝑑𝜿 𝑑𝛽 is required. However, this high-

dimensional integral cannot be computed—a characteristic of many Bayesian inference problems. In RVM, the posterior
is decomposed into two terms

P(𝜶, 𝜿, 𝛽 | y) = P(𝜶 | 𝜿, 𝛽, y) P(𝜿, 𝛽 | y).

The first term is a Gaussian,
P(𝜶 | 𝜿, 𝛽, y) = N(𝜶 | 𝝁,𝚺),

where
𝚺 = (𝛽𝑨𝑇 𝑨 + D)−1,

𝝁 = 𝛽𝚺𝚽𝑇y,

with D = diag(𝜅1, ..., 𝜅𝑃). The second term requires some further simplification. Since it is non-Gaussian, an
approximation is made by approximating it as a point-mass centred at the maximum. To find the maximum, we observe
that

P(𝜿, 𝛽 | y) ∝ P(y | 𝜿, 𝛽) P(𝜿) 𝑝(𝛽),

and under the uniform priors for both 𝜿 and 𝛽 only the first term needs to be considered. It is a Gaussian with respect to
y but not to 𝜿 and 𝛽,

P(y | 𝜿, 𝛽) = N(y | 0, 𝛽−1I +𝚽D𝚽𝑇 )

The learning task for RVM is then to find the appropriate values of 𝜿 and 𝛽 that maximizes this expression. Differentiating
P(y | 𝜿, 𝛽) with respect to the hyperparameters, their stationary points can be found in terms of 𝝁 and 𝚺. Thus, an
iterative approach is used to find the maximising hyperparameters. Empirically, it is observed that many of the 𝛼𝑖’s tend
to infinity as the minimisation routine progresses.

C. Gradient enhancement
The ability to utilise gradients when constructing polynomials is beneficial, particularly when there can be a net

reduction in the computational cost. From (7), we can estimate the gradients of 𝑓 to be

∇𝒙 𝑓 (𝒙) ≈ ∇𝒙𝑝 (𝒙)

=

𝑁∑︁
𝑗=1
𝛼 𝑗∇𝒙𝝓 𝑗 (𝒙)

=


∇𝑥 (1) 𝑷 (𝒙)

...

∇𝑥 (𝑑) 𝑷 (𝒙)

 𝜶
(20)

where each block in the matrix above is given by

∇𝑥 (𝑘) 𝑷 (𝒙) =
𝜕𝜙

(𝑘)
𝑗𝑘

(
𝑥 (𝑘)

)
𝜕𝑥 (𝑘)

(
𝑥 (𝑘)

) 𝑑∏
𝑞=1,𝑞≠𝑘

𝜙
(𝑘)
𝑗𝑘

(
𝑥 (𝑘)

)
(21)

for 𝑘 = 1, . . . , 𝑑. In this subsection, we discuss an approach for leveraging gradient (adjoint) evaluations for estimating
the unknown coefficients 𝜶, bearing in mind that the addition of gradients should abate the total number of model
evaluations required. To clarify, consider fitting a polynomial in 𝑑 = 10 with a total order basis with maximal degree 2,
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which has 66 coefficients. With least squares, we would require atleast 66 model evaluations if not more. The intention
behind using gradient evaluations would be to significantly reduce the number of model evaluations required.

While prior approaches in literature have adopted a stacked weighted least squares approach to this problem—where
the gradient orthogonal polynomial matrices in (20) are stacked with the polynomial matrix (see (7))—the methodology
used in equadratures is based on the work in [42] where a constrained least squares approach is used. To clarify this, let
us assume access to input, output, and gradient evaluations {𝝌𝑖 , 𝑓𝑖 ,∇𝒙 𝑓𝑖}𝑅𝑖=1. As the gradient evaluations are likely to
be more noisy, the following problem is solved

minimise
𝜶

∥𝑪𝜶 − d∥2
2 , subject to 𝑨𝜶 − b (22)

where 𝑨 ∈ R𝑅×𝑁 , b ∈ R𝑅, 𝑪 ∈ R𝑅𝑑×𝑁 , d ∈ R𝑅𝑑 , with

𝑪 =


𝑪 (1)

...

𝑪 (𝑑)

 ,
[
𝑪 (𝑘)

]
𝑖 𝑗
=
√
𝜔𝑖∇𝑥 (𝑘) 𝑷 𝑗 (𝝃𝑖) , and d =


d(1)

...

d(𝑑)

 ,
[
d(𝑘)

]
𝑖
=
√
𝜔𝑖∇𝑥 (𝑘) 𝑓𝑖 . (23)

Solutions to (22) are obtained via the null-space method (see Chapter 2 in [12]).

IV. Subspaces
In this section, we assume that 𝑓 ≈ 𝑝

(
𝑼𝑇x

)
, with 𝑼 ∈ R𝑑×𝑛 where 𝑛 < 𝑑 for some function 𝑚. This type of

approximation is known as a polynomial ridge approximation [17, 43, 44] and it explicitly embeds 𝒙 into a lower
dimensional submanifold. We define the set of all 𝑛-dimensional subspaces in R𝑑 to be the Grassmann manifold,
denoted by G (𝑛, 𝑑). If we add the additional constraint that we require the columns of 𝑼 to be orthogonal, then we refer
to the submanifold as the Stiefel manifold S𝑡 (𝑛, 𝑑).

For low values of 𝑛, i.e., one or two, the columns of 𝑼 permit visualisation of the discrete input-output data
pairs {x𝑖 , 𝑓𝑖}𝑀𝑖=1. This sub-manifold can deliver tremendous insight into the scalar-valued quantity of interest, while
offering tractable avenues for parameter studies. Discovering such manifold structure through affordable computational
algorithms has been the goal of many papers and will be discussed below. In the code, all subspace-based functionality
is encapsulated in the Subspaces class.

A. Active subspaces from polynomials
Constantine [15] draws our attention to a symmetric positive semidefinite 𝑑 × 𝑑 covariance matrix formed by the average
outer product of the gradient with itself

𝑪 =

∫
X
∇𝒙 𝑓 (𝒙) ∇𝒙 𝑓 (𝒙)𝑇 𝝆 (𝒙) 𝑑𝒙. (24)

The eigenvectors 𝑸 of this matrix can be obtained via the eigendecomposition 𝑪 = 𝑸𝚲𝑸𝑇 , and can reveal important
linear combinations along which the function’s gradients have large values (on average). The eigenvalues of 𝑪 are
given as diagonal entries in 𝚲 and can offer insight into the number of true orthogonal directions required. This is
particularly useful for designing low-dimensional surrogate models that can in turn be used for uncertainty quantification
and optimisation. One approach, although not necessarily optimal, is to set 𝑼 to be the first 𝑛 < 𝑑 columns of 𝑸, and
use standard regression techniques to estimate the coefficients of 𝑝

(
𝑼𝑇𝒙

)
.

For numerous computational problems where adjoints or accurate gradient estimates are unavailable, one can easily
evaluate 𝑓 ’s polynomial approximation to obtain

𝑪 ≈
∫
X
∇𝒙𝑝 (𝒙) ∇𝒙𝑝 (𝒙)𝑇 𝝆 (𝒙) 𝑑𝒙

=

∫
X

©­«
𝑁∑︁
𝑗=1
𝛼 𝑗∇𝒙𝝓 𝑗 (𝒙)ª®¬ ©­«

𝑁∑︁
𝑗=1
𝛼 𝑗∇𝒙𝝓 𝑗 (𝒙)ª®¬

𝑇

𝝆 (𝒙) 𝑑𝒙,
(25)

which may be numerically evaluated through quadrature or Monte Carlo. It may be beneficial to limit the maximal
degree of 𝑔 to be 2 or 3 depending on the size of 𝑑. Spurious higher order induced oscillations may lead to incorrect
gradient estimates at chosen values of 𝒙. When 𝑑 is very large, this strategy may be computationally prohibitive as it
requires approximating the function in the full-space R𝑑 with the polynomial 𝑝.
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B. Variable projection
To mitigate this, we consider the algorithm of Hokanson and Constantine [45] that yields the optimal polynomial

over a subspace, provided the subspace dimension 𝑛 is known. The authors use variable projection [46] to express the
problem of optimising jointly over both the subspace (Grassmann manifold) and the polynomial coefficients

𝑟 = minimise
𝑼 ,𝜶

∥ 𝑓 (𝒙) − 𝑝𝜶 ∥2
2 , (26)

with 𝑝𝜶 = 𝑝
(
𝑼𝑇𝒙

)
, where the subscript 𝜶 denotes the unknown coefficients. Assuming one has access to input-output

data pairs {𝝃𝑖 , 𝑓𝑖}𝑀𝑖=1, and setting

𝑨
({
𝑼𝑇𝝃𝑖

}𝑀
𝑖=1

)
=


𝝓1

(
𝑼𝑇𝝃1

) √
𝜔1 . . . 𝝓𝑁

(
𝑼𝑇𝝃1

) √
𝜔1

...
. . .

...

𝝓1
(
𝑼𝑇𝝃𝑀

) √
𝜔𝑀 . . . 𝝓𝑁

(
𝑼𝑇𝝃𝑀

) √
𝜔𝑀

 (27)

one can express (26) as

𝑟 = minimise
𝑼 ,𝜶




b − 𝑨
({
𝑼𝑇𝝃𝑖

}𝑀
𝑖=1

)
𝜶



2

2

= minimise
𝑼




b − 𝑨
({
𝑼𝑇𝝃𝑖

}𝑀
𝑖=1

)
𝑨†

({
𝑼𝑇𝝃𝑖

}𝑀
𝑖=1

)
b



2

2

= minimise
𝑼




(𝑰 − 𝑨
({
𝑼𝑇𝝃𝑖

}𝑀
𝑖=1

)
𝑨†

({
𝑼𝑇𝝃𝑖

}𝑀
𝑖=1

))
b



2

2
,

(28)

where the superscript † denotes the pseudoinverse. The optimisation problem in (28) can be solved via a Gauss-Newton
optimisation [45], following which the coefficients 𝜶 can be trivially computed. This effectively yields the subspace
polynomial 𝑝

(
U𝑇𝑥

)
which can be used as a surrogate.

C. Vector-valued dimension reduction
It is natural to extend the idea of a dimension reducing subspace to vector-valued quantities. Zahm et al. [47]

formulate this as a vector-valued generalisation of active subspaces. Wong et al. [48] argue that as most scalar-valued
qois are spatio-temporal integrals of vector-valued quantities (scalar fields), there is merit—both computational and
inferential—in identifying dimension reducing subspaces for the composite vector-valued quantities. Their approach and
some more recent work [44, 49] seeks to also construct a relationship between different elements of the vector-valued
quantity. For instance, in [48], a recursive nearest neighbour algorithm is used to identify elements that have similar
subspaces; in [49] the intersection of the subspaces of different quantities is used, while in [44] a separate covariance
function is used to establish an empirical relationship between different polynomial subspace-based approximations.

Generally, these works approximate a vector-valued function h (𝒙) ∈ R𝑇 as

h (𝒙) =


ℎ1 (𝒙)
...

ℎ𝑇 (𝒙)

 ≈


𝑝1

(
𝑼𝑇

1 𝒙
)

...

𝑝𝑇
(
𝑼𝑇
𝑇
𝒙
)

 (29)

where {𝑝1, . . . , 𝑝𝑇 } represent the 𝑇 different subspace-based polynomial approximations with subspaces {𝑼1, . . . ,𝑼𝑇 },
each possibly of different dimension. Such approximations can be effectively computed in equadratures and used in a
variety of applications.

In Scillitoe et al. [44], these ideas are used to develop a full flowfield estimation framework, which is found to
demonstrate competitive accuracy to a state-of-the-art convolutional neural network. The dimension-reducing nature of
the ridge approximations embedded within the flowfield can provide physical insight, and aids design space exploration.

The utility of multi-objective dimension reduction does not end with approximating flow fields. In [49, 50],
multi-objective dimension reduction is used as the computational backbone for blade envelopes, which offer rigorous
quantification of the effect of geometric deviations on manufactured and in-service turbomachinery blades. By using
dimension reducing subspaces associated with multiple objectives, geometric variations that can cause performance
deterioration can be differentiated from those that do not, taking into account multiple performance indices including
surface flow features.
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(a) (b) (c)

Fig. 3 Zonotopes in R𝑛 with 𝑛 = 2 associated uniform samples in (a) 𝑑 = 3; (b) 𝑑 = 10, and (c) 𝑑 = 200.

D. Zonotopes and synthetic data generation
Consider the set of all projected samples given by Z =

{
𝒛 = U𝑇𝒙, 𝒙 ∈ X

}
. In the case X is bounded with a closed

interval along each direction, Z is a convex polytope residing in R𝑛. One can think of Z as the silhouette of the
𝑑-dimensional hypercube, formally termed a zonotope. Figure 3 plots zonotopes for uniformly distributed random points
in R𝑑 with 𝑑 = 3, 10 and 200. The apparent collapsing of these points is a consequence of the Johnson-Lindenstrauss
lemma [51], which states that pairwise distances between points are roughly preserved without significant distortion.

Algorithms to compute the vertices of these zonotopes may be found in [52, 53]; in equadratures we utilise the
former. This permits one to visualise the data projected over R𝑛. Additionally, note that one can use convex optimisation
strategies to generate synthetic data. We discuss this point in further detail in the examples section of this paper.

V. Statistics
The Statistics class in equadratures computes moments, Sobol’ indices and higher-order statistical metrics from

the calculated coefficients. This builds upon some core ideas arising from polynomial chaos in the context of uncertainty
quantification.

A. Moments and sensitivities
Computation of the mean and variance are readily straightforward when using pseudospectral approximations [5]. We
can write the mean as

E ( 𝑓 (𝒙)) ≈ E (𝑝 (𝒙))

= E

[
𝑛∑︁
𝑖=1

𝛼𝑖𝝓𝑖 (𝒙)
]

= E [𝛼1𝝓1 (𝒙)] + E
[

𝑛∑︁
𝑖=2

𝛼𝑖𝝓𝑖 (𝒙)
]

︸               ︷︷               ︸
=0

= 𝛼1.

(30)
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In other words, the mean is simply given by the first coefficient of the expansion. Estimating the variance is also
straightforward

𝜎2 ( 𝑓 (𝒙)) ≈ 𝜎2 (𝑝 (𝒙))

= E


(

𝑛∑︁
𝑖=1

𝛼𝑖𝝓𝑖 (𝒙) − 𝛼1

)2
= E


(

𝑛∑︁
𝑖=2

𝛼𝑖𝝓𝑖 (𝒙)
)2

=

𝑛∑︁
𝑖=2

𝛼2
𝑖 .

(31)

It is this ability to rapidly estimate statistical moments in the absence of additional sampling that makes these polynomial
approximations so useful.

B. Global sensitivity analysis
Engineers are often interested in the answer to the question, “which of my model parameters are the most important?”
This is the one of the objectives of global sensitivity analysis. It seeks to apportion the uncertainty 𝑓 according to the
contribution of the inputs 𝒙. Typically, in this context importance is characterized by the conditional variance. One
relatively well-known strategy to quantify the importance of various inputs is through Sobol’ indices (see page 323 in
[5]), which can be readily approximated using orthogonal polynomial expansions [6]. As before let I be the multi-index
set associated with a chosen polynomial basis used for approximating a function 𝑓 . From (31), we can write the variance
as

𝜎2 =
∑︁

𝒊∈I, 𝒊≠1
𝑥2
𝒊 . (32)

Now Sobol’ indices represent a fraction of the total variance that is attributed to each input variable (the first order
Sobol’ indices) or combinations thereof (higher order Sobol’ indices). Let I𝒔 be the set of multi-indices that depend
only on the subset of variables 𝒔 = {𝑖1, . . . , 𝑖𝑠}, i.e.,

I𝒔 =
{
𝒊 ∈ N𝑑 : 𝑙 ∈ 𝒔 ⇔ 𝑖𝑙 ≠ 0

}
. (33)

The first order partial variances 𝜎2
𝑖

are then obtained by summing up the square of the coefficients in I𝒔

𝜎2
𝑗 =

∑︁
𝒊∈I𝑗

𝑥2
𝒊 , I𝑗 =

{
𝒊 ∈ N𝑑 : 𝑖 𝑗 > 0

}
, (34)

and the higher order variances 𝜎2
{𝑖1 ,...,𝑖𝑠 } can be written as

𝜎2
𝒔 =

∑︁
𝒊∈I𝒔

𝑥2
𝒊 , I{𝑖1 ,...,𝑖𝑠 } =

{
𝒊 ∈ N𝑑 : 𝑙 ∈ 𝒔 ⇔ 𝑖𝑙 > 0

}
. (35)

The first and higher order Sobol’ indices are then given by

𝑆 𝑗 =
𝜎2
𝑗

𝜎2 and 𝑆𝒔 =
𝜎2
𝒔

𝜎2 . (36)

C. Higher order statistics
In some cases, statistics beyond the output mean and variance can provide useful information about the behavior of

a model. Statistics such as the global skewness and kurtosis quantify the weight of the tail of a distribution, which
can lead to better predictions about the occurrence of extreme events. For example, [54] finds that incorporating
information about output skewness and kurtosis improves the accuracy of the output probability distribution function of
an approximate model.
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Fig. 4 Illustrating the use of the Nataf transform to sample input points for polynomial approximations.

In a similar vein to Sobol’ indices, sensitivity indices can be constructed for skewness [55] and kurtosis [56].
In particular, the work of Owen et al. [57] hypothesizes that skewness-based indices are useful for indicating the
sensitivities of different input parameters near regions where the output is driven to extrema. Given that engineering
systems are often operated at points where output quantities are optimized, it is useful to know about the input factors that
can affect the operation of these systems most strongly. In Wong et al. [58], the connections between skewness-based
indices and extremum Sobol’ indices—a set of variance-based indices adapted to output extrema via Monte Carlo
Filtering and polynomial approximations—are examined in the context of calculating extremum sensitivities.

D. On correlations
Recall from Section II.A that the construction of multivariate orthogonal polynomials as products of univariate

polynomials relies on the fact that the input distribution 𝜌 can be decomposed into the product of its marginals. That
is, it was assumed that input parameters are distributed with pairwise independence. Supposing that this assumption
cannot be made, how can one construct orthogonal polynomial bases?

One approach is to construct a bijective map 𝑇 from the space of correlated input variables x to another where the
transformed inputs z are no longer correlated, and are distributed with normal distributions,

z = 𝑇 (x). (37)

With z, one can then construct an orthogonal polynomial system with the methods described so far. The resultant
polynomial can then be evaluated by the inverse transform 𝑇−1

𝑓 (x) = 𝑓 (𝑇−1 (z)) ≈
𝑛∑︁
𝑖=1

𝛼𝑖𝝓(z) (38)

This is known as the Nataf transform [59] (see Figure 4). The limitation of this method is that one now has to fit a
polynomial to the function 𝑓 ◦ 𝑇−1 instead of 𝑓 , where the transform and its inverse can introduce strong non-linearity,
increasing the order of polynomials required to adequately form an approximation.

Another approach [60] uses the Gram-Schmidt process to construct an orthogonal basis from an initially linear
independent basis set. Ignoring the correlations between the inputs x, one can construct a basis set {𝝍(x)} that is
orthogonal with respect to the product of the marginals of 𝜌, but not orthogonal with respect to 𝝆 (𝒙) (since correlations
are ignored). Since they are still linearly independent, the Gram-Schmidt process can be applied on the basis functions.
A discrete analogue of the process that can be implemented on a computer involves the QR decomposition

1
√
𝑀

𝚿 = 𝑸𝑹, (39)

where 𝚿 is a polynomial evaluation matrix for 𝑀 points sampled randomly according to the correlated distribution 𝜌.
A new set of polynomials {𝝓} can be constructed by

𝜙 𝑗 (x) =
𝑁∑︁
𝑘=1

𝜓𝑘 (x) (𝑹−1)𝑘 𝑗 . (40)
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The resultant set {𝝓} is then orthogonal to 𝝆.
With the added complexity of modelling correlations and constructing new polynomial bases, one may ask whether

it is important to model correlations in the first place. In some simulation and experimental situations, we may have a
priori reasons to believe that correlations are present in the inputs. In this case, resultant output statistics derived from
the polynomial approximation can be significantly affected if such correlations are neglected [61].

VI. Classification
Equadratures is not solely limited to regression problems. Many classification paradigms can generate a binary

response to whether a given set of observations fall in a class or not by wrapping an exponential function around a linear
regression model. In what follows, we detail how this is done with equadratures—leveraging some of the subspace-based
ideas presented above.

In classification tasks, we are given a set of training data, in the form of input/output data pairs

D = {(𝝃1, 𝑐1), (𝝃2, 𝑐2), . . . , (𝝃𝑀 , 𝑐𝑀 )}, (41)

where the outputs 𝑐𝑖 take discrete values from a finite set, corresponding to 𝐾 different classes. The objective is to
learn a function—the classifier—which allows the prediction of the class of an unseen data point. The simplest way to
evaluate the performance of a classifier is to check its classification accuracy on a set of unseen test data: the fraction of
correctly classified test data points. Classification, especially of various types of structured data, has been an active area
of research, and many types of models such as support vector machines, convolutional neural networks and decision
trees have been proposed and studied.

A. Standard logistic regression
We begin by considering the standard logistic classifier (also known as the perceptron), which takes the form

𝑔(𝒙; w) = 1
1 + exp(−w𝑇x) . (42)

The function takes in a linear transformation of the input −w𝑇𝒙, and returns a value between 0 and 1. When applied to
binary classification, where 𝑐𝑖 can take two values—0 and 1—the output can be interpreted as a probability representing
the confidence that the point belongs to class 1. To train the logistic classifier, one can optimize the weights w with
respect to a loss function that characterize the misfit of the training data by the classifier. One popular loss function is
the cross entropy, defined as

𝐿 (w;D) = − 1
𝑀

𝑀∑︁
𝑖=1

𝑐𝑖 log 𝑔(𝝃𝑖; w) + (1 − 𝑐𝑖) log(1 − 𝑔(𝝃𝑖; w)). (43)

The derivative of this function with respect to the parameters w is calculated as

𝜕𝐿

𝜕w
= − 1

𝑀

𝑀∑︁
𝑖=1

𝝃𝑖 (𝑐𝑖 − 𝑔(𝝃𝑖; w)) (44)

Using this expression, the loss function can be minimized using a gradient-based method, such as conjugate gradients.
The logistic classifier depends on the input in the form of w𝑇𝒙, a linear function of 𝒙. The set of points that yield a
value of 0.5 when put through the logistic classifier forms the decision boundary, separating the input domain into two
partitions. In one partition, we predict the point to be in class 0, and the other, class 1. For the logistic classifier, this
boundary is a hyperplane. However, in most classification tasks, the data is not separable by a hyperplane.

B. Polynomial subspace-based logistic regression
Here, we describe an extension to this well-known formulation by allowing the decision surface to be defined by a

polynomial ridge approximation. The classifier is now of the form

𝑔(𝒙) = 1
1 + exp(−𝑝(𝑼𝑇𝒙))

=
1

1 + exp(−∑𝑁
𝑗=1 𝛼 𝑗𝝓 𝑗

(
𝑼𝑇𝒙

)
)
.

(45)
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where the polynomial expansion takes in a linear transformation of the input U𝑇𝒙, where as before U ∈ R𝑑×𝑛 with
𝑛 ≪ 𝑑 . This effectively constraints the decision function to the subspace spanned by the columns of U. In equadratures,
we formulate this as a manifold optimisation problem

minimize
U,𝜶

𝐿 (𝑼,𝜶;D) = − 1
𝑀

𝑀∑︁
𝑖=1

𝑐𝑖 log 𝑓 (𝝃𝑖;𝑼,𝜶) + (1 − 𝑐𝑖) log(1 − 𝑓 (𝝃𝑖;𝑼,𝜶)).

subject to 𝑼 ∈ St(𝑑, 𝑛).
(46)

A few remarks on the above are in order, particularly in light of our exposition of the variable projection approach for
solving the regression problem (see (26)). First, our choice in selecting the Stiefel manifold is based on the desire to
have 𝑼 be orthonormal, i.e., 𝑼𝑇𝑼 = 𝑰. Second, unlike the regression formulation, the above classification one is not
readily separable and therefore an alternating approach is used. As the optimisation over 𝑼 is constrained to the Stiefel
manifold, it needs to be performed separately from that of 𝜶. This necessitates the approach described below.

• Fix 𝑼, optimise over c using a standard gradient-based method.
• Fix 𝜶, and optimise over 𝑼 over the Stiefel manifold using a gradient-based method.

The two steps are repeated until convergence in the objective. To perform the latter step, tools from differential geometry
can be used to formulate the gradient on the Stiefel manifold (see [62]).

VII. Polynomial Trees
There are numerous instances when fitting a global polynomial to data is not appropriate. Figure 5(a,b) highlights

some of the issues, including the gross over prediction at the boundaries and the smoothing out of discontinuities in the
data. Both of these can be misleading, particularly in high-dimensional problems where the polynomial approximation
may not be easily visualised. This motivates the utilisation of tree-based hierarchies to delineate where to best split a
polynomial.

A. Gradient-based splitting
The majority of tree-based learning models are constructed using recursive partitioning, yielding an efficient yet

essentially locally optimal approach. Notable exceptions include tree induction methods using genetic algorithms [63],
and those utilising mathematical programming [64]. Well-known CART decision trees [65] recursively partition X, by
greedily performing binary left/right splits splits at each node. The split-dimension and split-threshold are chosen to
maximise the gain in predictive accuracy. In an attempt to achieve predictive accuracy, whilst keeping training costs
low, [66] propose a new splitting criterion based upon gradients of the weak models’ loss. We adopt their criterion in
equadratures to build regression trees.

Our objective is to identify a split along a given dimension 𝑥 (𝑘) ∈ X (𝑘) for some 𝑘 ≤ 𝑑. We assume the existence of
a dataset of input-output pairs {𝝃𝑖 , 𝑓𝑖}𝑀𝑖=1 where we denote the complete set of input samples as 𝐷 = {𝝃1, . . . , 𝝃𝑀 }. As
we seek to partition this data into two child nodes, we define L ⊆ D as the set of data falling in the left child node, and
R = D \L as being its complement and therefore the set of samples falling in the right child node. Within the two child
nodes, the standard 𝐿2 norm loss function 𝑙 is used to determine the quality of the approximation. At the parent node, a
gain function 𝑔 (L,R) that aggregates these two loss functions needs to be computed. To minimise computational costs,
[66] propose a Taylor series based approximation to this gain function yielding

𝑔 (L,R) = ∥∇𝜶𝑙 (L)∥2
2 + ∥∇𝜶𝑙 (R)∥2

2 (47)

Setting the loss function to be the standard weighted 𝐿2 norm error

𝑙𝜶 (D) = ∥𝑨𝜶 − b∥2
2 , (48)

the gradients in (47) can be trivially computed. In equadratures this functionality is embedded within the Polytree
class, which provides the user with flexibility on the (i) maximum order of the polynomial to be utilised; (ii) the
regression method used for computing 𝜶, and (iii) the ability to prune down the number of child nodes based on the loss
function value. A simple demonstration of this is shown in Figure 5(c, d).
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(a) (b)

(c) (d)

Fig. 5 Fitting a global polynomial to two different datasets in (a, b); fitting a piecewise polynomial tree-based
model to the same datasets in (c, d).
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B. Computing moments on trees
As established in Section V, a salient advantage to using orthogonal polynomials is the ease of computations for

output moments. With polynomial trees, moments can also be readily furnished through minor modifications that
appropriately sum up contributions from the different node polynomials.

With a polynomial tree, the input domain is partitioned into regions, and within each an orthogonal polynomial is fit.
The task is to quantify global moments given the coefficients of the polynomial in each sub-domain. To ease exposition,
we will make three simplifying assumptions:

1) the input distribution is uniform over a bounded hypercube;
2) in each subdomain, we also have uniform distributions, and
3) legendre orthogonal polynomials are used in each subdomain.

This implies that in subdomain 𝑗 , the distribution is

𝜌 ( 𝑗) (x) = 1
𝑉𝑜𝑙 ( 𝑗)

(49)

where 𝑉𝑜𝑙 ( 𝑗) is the volume of the hypercube defining the subdomain. Also, note that

𝜌(x)
𝜌 ( 𝑗) (x)

=
𝑉𝑜𝑙 ( 𝑗)

𝑉𝑜𝑙
(50)

where 𝑉𝑜𝑙 is the overall input domain’s volume. The mean can thus be computed as:

E( 𝑓 (x)) =
∫

𝑝(x) 𝜌(x) 𝑑x

=
∑︁
𝑗

∫
𝑗

𝑝 ( 𝑗) (x) 𝜌(x) 𝑑x

=
∑︁
𝑗

𝑉𝑜𝑙 ( 𝑗)

𝑉𝑜𝑙

∫
𝑗

𝑝 ( 𝑗) (x) 𝜌 ( 𝑗) (x) 𝑑x

=
∑︁
𝑗

𝑉𝑜𝑙 ( 𝑗)

𝑉𝑜𝑙
𝛼
( 𝑗)
1 .

where
∫
𝑗

is an integral over subdomain 𝑗 , while 𝑝 ( 𝑗) and 𝛼 ( 𝑗) are the polynomial fitted in this subdomain and its
coefficients respectively. The variance can also be computed:

𝜎2 ( 𝑓 (x)) =
∫

𝑝(x)2 𝜌(x) 𝑑x −
(∫

𝑝(x) 𝜌(x) 𝑑x
)2

=
∑︁
𝑗

𝑉𝑜𝑙 ( 𝑗)

𝑉𝑜𝑙

∫
𝑗

𝑝 ( 𝑗) (x)2 𝜌 ( 𝑗) (x) 𝑑x −
(∑︁

𝑗

𝑉𝑜𝑙 ( 𝑗)

𝑉𝑜𝑙

∫
𝑗

𝑝 ( 𝑗) (x) 𝜌 ( 𝑗) (x) 𝑑x

)2

=
∑︁
𝑗

𝑉𝑜𝑙 ( 𝑗)

𝑉𝑜𝑙

𝑃∑︁
𝑖=1

𝛼
( 𝑗)2
𝑖

−
(∑︁

𝑗

𝑉𝑜𝑙 ( 𝑗)

𝑉𝑜𝑙
𝛼
( 𝑗)
1

)2

.

For distributions other than the uniform distribution, the ratio of densities 𝜌(x)/𝜌 ( 𝑗) (x) takes a different form, but the
moments can be evaluated in a similar manner.

VIII. Case studies
In this final section, we share four illustrations of a subset of the methodologies presented earlier, in the form of case

studies. All are focused on building surrogate models to Computational Fluid Dynmaics (CFD) based datasets.

A. Uncertainty quantification with missing data
Consider a simulation of the von Karman Institute LS89 turbine cascade [67], shown in Figure 6, simulated with

the SU2 CFD code [68]. This is a popular test case for exploring the performance of different CFD approaches for
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turbomachinery applications [69]. As is common in industry, we choose to use a RANS model, the Shear Stress
Transport (SST) model [70], to account for turbulence. This requires two additional transport equations to be solved, one
for the turbulent kinetic energy 𝑘 , and one for the specific dissipation rate𝜔. The inflow and outflow boundary conditions
are well specified in the experiment. However, the introduction of the SST model necessitates the specification of
two additional inflow boundary conditions, the turbulence intensity 𝑇𝑖, and the turbulent viscosity ratio 𝜈𝑡/𝜈∗. These
quantities are not measured in the experiment, and so they introduce some additional uncertainty. Our aim here is to
quantify the uncertainty in our output qoi, due the uncertainty in these turbulent boundary conditions. We take the
stagnation pressure loss coefficient as our qoi

𝑌𝑝 =
𝑝0∞ − 𝑝0

𝑝0∞ − 𝑝∞
. (51)

Fig. 6 A RANS simulation of the LS89 turbine cascade, with contours coloured by Mach number.

We assume that we have a rough estimate for the value of 𝑇𝑖, since this quantity is commonly measured using a
hot-wire probe(s). For this reason, we define it as a normal distribution N(10, 5), indicating an estimate of 𝑇𝑖 ≈ 10%,
albeit with a considerable uncertainty of 𝜎2 = 5%. On the other hand, 𝜈𝑡/𝜈 is a physically vague quantity, and values
ranging from 1 to 100 are often recommended. Therefore, we define it as a uniform distribution U(1, 100). The next
task is to define a polynomial basis, for which we select a standard tensorial basis.

The resulting design of experiments (doe) consists of an 𝑁 = 16 set of x vectors containing the 𝑇𝑖 and 𝜈𝑡/𝜈 values at
which the CFD model must be evaluated, as shown in Figure 7(a). The CFD model is evaluated 16 times to obtain the
loss coefficient values at each doe point, and the 𝑌𝑝 values are stored. It is then trivial to compute the mean and variance;
and in this case we find that the 95% confidence interval in 𝑌𝑝 due to the uncertainty in inflow turbulence specification
is ±4.7 × 10−4𝑝.𝑝.. This may appear small, but it equates to 0.88% of the mean value, so may be significant for some
applications.

Now, in practice, CFD simulations may fail or have poor convergence, and not all 16 𝑌𝑝 values may be available, as
shown in Figure 7(b), where four simulations have been randomly assigned NaN values, and fed into the code. The code
recognises this, and alters the polynomial coefficient computing strategy, opting to use least squares on the data that is
available. The results are summarised in Table 1, where it is clear that despite the missing data, the code is able to offer
reasonable predictions.

Table 1 Estimated variance of turbine stage efficiency with different methods.

Case Mean Confidence interval %
full tensor grid 0.0532 0.881
missing entries 0.0532 0.873

For completeness, the code used to generate these results is given below.
∗The SU2 solver uses turbulence intensity 𝑇𝑖, and turbulent viscosity ratio 𝜈𝑡/𝜈 as its turbulent inflow boundary conditions. The original

turbulent field variables can be recovered with 𝑘 = 3
2 (𝑈 𝑇𝑖) and 𝜔 = 𝑘

𝜈

( 𝜈𝑡
𝜈

)−1, where 𝜈 is the laminar kinematic viscosity.
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(a) (b)

Fig. 7 A tensor grid set of points for the VKI turbine blade design of experiment: (a) full grid; (b) grid with
missing evaluations.

1 from equadratures import *
2

3 # define parameters and basis
4 turb_visc = Parameter(distribution=’Uniform’, lower=1.0, upper=100, order=3)
5 Ti = Parameter(distribution=’Gaussian’, shape_parameter_A=10,
6 shape_parameter_B=5, order=3)
7 mybasis = Basis(’tensor-grid’)
8

9 # Define polynomial and get quadrature points
10 mypoly = Poly(parameters=[turb_visc ,Ti],
11 basis=mybasis,
12 method=’numerical -integration’)
13 pts = mypoly.get_points() # evaluate CFD at these points
14

15 Yp = np.load(’CFD_results.npy’) # load CFD based Yp
16 mypoly.set_model(Yp) # compute polynomial coefficients
17 mean, var = mypoly.get_mean_and_variance() # get mean and variance
18 CI = 1.96*math.sqrt(var)/mean

Listing 1 Code for VKI LS89 turbine blade uncertainty quantification study.

B. ONERA M6 with polynomial trees
We consider transonic flow over the 3D ONERA M6 wing. Using the inviscid compressible solver in the SU2 CFD

suite [68], we simulate this for a range of freestream conditions, as shown in Figure 8. Due to its transonic nature, the
flowfield undergoes a pronounced change as the freestream Mach number is increased. This results in a near step-change
in the quantity of interest, the drag coefficient 𝐶𝐷 , making it difficult to approximate with a global polynomial.

To mitigate this issue, we invoke equadrature’s PolyTree class to partition the input parameter space with a decision
tree, and then fit polynomials to the leaf nodes’ data. Originally intended as a highly interpretable model for supervised
machine learning tasks, they can also be used for uncertainty quantification applications where a continuous polynomial
approximation is inaccurate. Syntax for the PolyTree class closely resembles that of other popular machine learning
python libraries like scikit-learn [71]. The resulting tree, and its response surface, are visualised in Figure 9. Splitting the
input domain into two sub-domains has allowed for more appropriate handling of the discontinuity around 𝑀𝑎∞ = 0.92.
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Fig. 8 The DOE for the ONERA M6 transonic wing test case, with freestream angle of incidence 𝜶∞ and
freestream Mach number 𝑴𝒂∞ varied. Contours of surface Mach number are shown for two of the DOE points.

The drag coefficient is seen to be a function of 𝛼∞ only for 𝑀𝑎∞ > 0.92, whilst elsewhere, the drag coefficient is
influenced by 𝑀𝑎∞, and the interaction between 𝑀𝑎∞ and 𝛼∞.

Fig. 9 A one split deep polynomial regression tree, fitted to the training data from the ONERA M6 transonic
wing DOE. First and second order Sobol’ indices are shown for the left and right polynomials.

To demonstrate the ease with which the results above can be generated, we include the code below. Note that for
computing the moments and sensitivities both local (specific to the node, i.e., one polynomial) and global (across the
entire tree) metrics can be readily obtained following VII.B. Additionally, note that a graphical representation of the tree
can be obtained as shown in Figure 9.

1 from equadratures import *
2

3 mytree = PolyTree(splitting_criterion=’loss-gradient’, max_depth=1, order=2) # define
4 mytree.fit(X_train, y_train) # fit to training data
5 test_prediction = mytree.predict(X_test) # make predictions on test data
6 left_poly = mytree.get_node(1)
7 left_poly.plot_sobol_indices()
8 mytree.get_mean_and_variance() # returns mean and variance for the entire tree
9 mytree.get_graphviz() # plot the tree with graphviz

Listing 2 Code for constructing a piecewise polynomial regression tree.

C. Subspace-based polynomial approximation
In this case study we consider the CFD-generated datasets found in [72]. The data set comprises the efficiency

and pressure ratio for a fan blade parameterised by 25 design variables. The objective of this study is to understand
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how subspace-based projections may be used to analyse the geometrical parameters that drive efficiency and pressure
ratio values, in the same manner as [18] but in a few lines of equadratures code using the variable projection approach
detailed in IV.B.

1 from equadratures import *
2

3 # load the data
4 data = datasets.load_eq_dataset(’3Dfan_blades’,verbose=False)
5 X = data[’X_a’]
6 y_efficiency = data[’y1_a’]
7 y_pr = data[’y1_b’]
8

9 # efficiency subspace
10 subspace_efficiency = Subspaces(method=’variable-projection’,
11 sample_points=X,
12 sample_outputs=y_efficiency)
13 plot_2D_contour_zonotope(subspace_efficiency)
14

15 # pressure ratio subspace
16 subspace_pr = Subspaces(method=’variable -projection’,
17 sample_points=X,
18 sample_outputs=y_pr)
19 plot_2D_contour_zonotope(subspace_pr)

Listing 3 Code for generating polynomial subspace-based approximations.

By default equadratures assumes the subspace dimension 𝑛 = 2. The results of the code above are captured in
Figure 10. Note that the subspaces used for the projections in (a) and (b) are different as they correspond to the two
different objectives. However, utilities based on a hit-and-run method [52] are used in equadratures to generate samples
in one subspace and project them to the other. The results of generating samples in the pressure ratio subspace and
projecting them to the efficiency subspace are shown in Figure 11. Note that we include both a mean and a standard
deviation. This is because infinitely many samples in R𝑑 that map to R𝑛 can be generated. Thus, when quantifying the
pressure ratio variation across the efficiency subspace, in equadratures, 500 random samples in R𝑑 are generated for
each R𝑛 coordinate on a grid of approximately 10,000 points on the efficiency subspace in Figure 10(a). Each of these
5,000,000 R𝑑 samples is then pushed through the polynomial subspace-based approximation for the pressure ratio. The
mean and standard deviation of the 500 samples are reported for each coordinate in Figure 11(a) and (b) respectively.
These results illustrate that in regions where the efficiency is high, there is on average a tendency for the pressure ratio
values to be low. The code for the last two plots are given below for completeness.

1 plot_samples_from_second_subspace_over_first(mysubspace_1=subspace_efficiency , \
2 mysubspace_2=subspace_pr)

Listing 4 Code for generating polynomial subspace-based approximations.

IX. Conclusions
This paper presented an overview of equadratures along with a deep-dive into certain aspects of the code. What started

off as a project for facilitating reproducible research in polynomial chaos has now transformed into a much larger project
touching multiple aspects of computational engineering, data science, and machine learning. Through the numerical
examples in this paper, we demonstrated the easy approach to build polynomials—be it global, piecewise, gradient-
enhanced, sparse, or subspace-based—to compute moments and sensitivities for both regression and classification
tasks.

Some of the novel methodology contributions of our work include:
• The utilisation of relevance vector machine for estimating coefficients for polynomial approximations, building

upon ideas from the Bayesian machine learning community.
• The development of a polynomial tree framework with the ability to estimate global statistics, using the coefficients

and basis polynomials defined at each node. The tree also has flexibility in the way the coefficients are computed.
• The development of a polynomial subspace-based classification paradigm that pairs manifold optimisation

techniques with well-worn cross entropy objective for logistic regression.
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(a) (b)

Fig. 10 Plots of the (a) efficiency, and (b) pressure ratio subspace, obtained via polynomial variable projection.
The polynomial contours are shown over the zonotopes; the circular markers (and colors therein) denote the data.

(a) (b)

Fig. 11 Plots of the pressure ratio (a) mean, and (b) standard deviation on the efficiency subspace.
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Additionally, the code has been purpose-built to be easily accessible, ensuring engineers and data scientists can prototype
code that can be quickly deployed on relevant industrial problems.
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