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Abstract Theoretical methods are developed to understand the effect of non-
uniform grids on Flux Reconstruction (FR) in multi-dimensions. The analysis
reveals that the same effect of expanding and contracting grids is seen in two
dimensions as in one dimension. Namely, that expansions cause instability and
contractions cause excess dissipation. Subsequent numerical experiments on the
Taylor-Green Vortex with jittered elements show the effect of localised regions of
expansion and contraction, with an initial increase in the kinetic energy observed
on non-uniform meshes. Some comparison is made between second-order FR and
second-order finite volume (FV). FR is found to be more resilient to mesh de-
formation, however, FV is found to be more resolved when operated at second
order on the same mesh. In both cases, it is recommended that a kinetic energy
preserving/conservation formulation should be used as this can greatly increase
resilience to mesh deformation.
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1 Introduction

Since the inception of Spectral Volume methods by Wang [45], the trajectory
of high order methods has trended towards the Flux Reconstruction method of
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Huynh [19] and Vincent et al. [41]. This approach draws on the work of Finite
Elements, see Brenner and Ridgway-Scott [8], enabling the high performance of
Flux Reconstruction on heterogeneous computing — as can be seen in the highly
efficient use of vast computing resources by Vincent et al. [44]. However, the move
towards high order was not born out of a need for more efficient use of modern HPC
environments. For example, Brandvik and Pullan [7] showed that high throughput
could be obtained using second-order Finite Volume (FV) methods. Instead, the
main motivating factor has been the increased uptake by industry of turbulence
resolving methods, such as Large Eddy Simulation (LES), as this allows for far
better exploration of flow physics and moves towards the aim of computational
wind tunnels. The main feature of LES is the modelling of the very smallest scales
of motion, which removes the need for Direct Numerical Simulation (DNS) levels
of resolution. However, Chow and Moin [11] and Ghosal [15] showed that, for LES,
the need to keep the truncation error small to enable the sensible use of sub-grid
scale models meant that the grid requirements were demanding. A move to higher
order would mean that the scaling of the truncation error was to a higher power of
grid spacing — thus lowering the grid requirements and decoupling the scaling of
aliasing error and truncation error. Hence, for wall-resolved LES, calculations are
often impractical unless the improved mesh resolution requirements of high order
methods are considered.

The analytical understanding of Flux Reconstruction has been explored to
a large extent in the work of Vincent et al. [42], Jameson et al. [22], and Cas-
tonguay et al. [10], where the stability of linear advection, advection-diffusion,
and non-linear problems were presented. The key findings were the energy stabil-
ity of FR on linear problems, and the condition for energy stability on non-linear
problems. In addition, by investigating the dispersion and dissipation characteris-
tics of FR, the existence of superconvergence after temporal integration and the
corresponding CFL limits were found. This work was limited to one dimension
— although still applicable, the investigation of the exact behaviour of FR in
higher dimensions has been limited, such as that of Williams and Jameson [47]
and Sheshadri and Jameson [32]. This work focused primarily on the proof of the
Sobolev type energy stability in 2D in a similar manner to that of Hesthaven and
Warburton [18], alongside some numerical studies performed for validation.

The advantage of FR — that leads to high performance on heterogeneous
and massively parallel architectures — is its unstructured and sub-domain nature.
Unstructured grids also allow far more complex geometries to be considered, but
the resulting meshes experience deformation, expansion, and contraction of the
elements. We wish to characterise the performance of FR under these conditions,
and so far the effect of linear mesh deformation on FR has been considered in one
dimension by Trojak et al. [37]. Therefore, we make use of the seminal work of
Lele [26], in which the dispersion and dissipation of finite difference methods were
considered in both one and two dimensions. We wish to repeat this process for
FR, but extend it to also consider deformed grids.

In this paper, we present an extension to the one-dimensional analytical work
of Vincent et al. [42] and Trojak et al. [37]. This extension will be shown for a
two-dimensional case on quadrilaterals with rectilinear mesh stretching, but could
also be performed on higher dimensional hypercubes. From the basis of this more
general von Neumann analysis, the behaviour of FR on linearly mapped meshes
can be explored. The investigation has been restricted to linear transformation
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as these are of key importance for complex industrial simulations due to there
fundamental nature. For example, they occur in meshes where mesh generators
have simply tessellated elements to fill the domain. Therefore, understanding their
character is key, however, we should point to some recent work that has numerically
investigated curved meshes [27,48].

The aim of this work is to understand the effect of moving to higher dimension-
ality on key metrics governing scheme performance, such as CFL limit, dispersion,
and dissipation. Finally, the Taylor-Green vortex will be used to understand how
deformed meshes affect full Navier-Stokes calculations, with reference calculations
performed by an industrial second order finite volume method.

2 Flux Reconstruction

Flux Reconstruction [9, 19] (FR) applied to the linear advection equation will
form the basis of the initial investigation to be carried out, and for the reader’s
convenience, an overview of the scheme is presented here. However, for a more
detailed understanding, the reader should consult Castonguay [9] or Huynh [19].
This 1D scheme can be readily converted to two and three dimensions for quadri-
laterals and hexahedrals, respectively. First, let us consider the one-dimensional
advection equation:

∂u

∂t
+
∂f

∂x
= 0 (1)

The FR method is related to the Discontinuous Galerkin (DG) method [29] and
makes use of the same subdivision of the domain into discontinuous sub-domains:

Ω =
N⋃
n=1

Ωn (2)

Within the standardised sub-domain, Ω̂ ∈ Rd, computational spatial variables
are defined. When d = 1, Ω̂ = [−1, 1], using ξ to denote the value taken. This
computational space is discretised with (p+ 1)d solution points, and 2d(p+ 1)d−1

flux points, placed at the edges of the sub-domain. The solution and flux point
locations are determined using a tensor grid of a 1D quadrature. Fig. 1a shows a
1D example of this. To transform from Ωn → Ω̂, a Jacobian Jn is defined such
that:

ûδ = ûδ(ξ; t) = Jnu
δ(x; t) (3)

With this domain set up, we now proceed with defining the steps to construct a
continuous solution from the discontinuous segments. The first stage is to define
a local solution polynomial in Ω̂ using Lagrange interpolation.

lk(ξ) =

p∏
i=0,i6=k

ξ − ξi
ξk − ξi

(4)

ûδ(ξ) =

p∑
i=0

ûδi li(ξ) (5)
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out for p = 3 in Ω̂, with cor-
responding left and right Huynh
correction functions.
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(b) Diagram showing the procedure of correct-
ing one, central, interface.

Fig. 1: Point layout in Ω̂ for p = 3 and cell interface topology.

Repeating the interpolation for the discontinuous flux in Ω̂:

f̂δD = f̂δD(ξ, t) =

p∑
i=0

f̂δDi li(ξ) (6)

Here we define f̂δD as the transformed discontinuous flux polynomial. Now using
the Jacobian and the solution polynomials, the primitive values can be calculated
in the physical domain Ωn:

uδ(x) =
ûδ(ξ)

Jn
=

p∑
i=0

uδi li(ξ) (7)

The primitive polynomial can then be interpolated to the interface and define
as ûδl = ûδ(−1) and ûδr = ûδ(1). The values at the interface, I, then allow for a
common interface flux, fδII , to be calculated in the physical domain. The is shown
graphically in Fig. 1b. For a general case, this is done using a Riemann solver
on the primitives at the interface, such as: Roe [30]; flux vector splitting [25]; or
HLL [16]. In order to get a spatially continuous solution over Ω, the common
interface flux has to be incorporated into the solution. For FR this is done by
using a correction function to propagate the corrected flux into Ωn. The definition
of the correction function was shown to be important in the determination of the
characteristics of FR, Vincent et al. [42]. Primarily the correction function is a
polynomial which, in one dimension, has the boundary conditions:

hL(−1) = hR(1) = 1 (8)

hR(−1) = hL(1) = 0 (9)

Beyond this, several sets of stable correction functions have been defined, firstly
unified by Vincent et al. [41] and later expanded in [35, 36, 39, 43]. However, in
this paper, we will focus on the correction function defined by Huynh [19], in
particular, the Huynh g2 correction function, which is shown in Fig. 1a. We will also
consider the correction that can recover Nodal Discontinuous Galerkin (NDG) [17]
as it provides a good point of comparison, due to DG relevance and maturity.
It should be noted that the NDG correction function will only recover NDG in
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FR for homogeneous linear flux functions, due to the different mechanisms of
aliasing. At times we will also explore some of the effects of correction function in
two dimensions and for this, we will restrict ourselves to the Original Stable FR
(OSFR) family of [41], for brevity. This is a one-parameter family of the correction
functions for which we will call the control parameter ι.

The correction to the flux function is then calculated using the difference be-
tween the discontinuous and common interface values and a correction function.
The correction is then defined as:

f̂δC = (f̂δIL − f̂
δD
L )hL(ξ) + (f̂δIR − f̂

δD
R )hR(ξ) (10)

and, hence the corrected continuous gradient of the flux is then:

∂f̂δ

∂ξ
=

df̂δD

dξ
+

df̂δC

dξ
(11)

=

p∑
j=0

f̂δDj
dlj(ξ)

dξ
+ (f̂δIL − f̂

δD
L )

dhL(ξ)

dξ
+ (f̂δIR − f̂

δD
R )

dhR(ξ)

dξ
(12)

Finally, the solution is advanced in time following Eq. (13) — this can be done
via a sensible choice of temporal integration.

∂ûδ

∂t
= −∂f̂

δ

∂ξ
(13)

The method detailed here was shown for simplicity in one dimension, but in subse-
quent sections, the method for extending this to a high dimension will be detailed.
We will briefly state that to increase the dimensionality of the method a tensor
product is used, which is this same method as is used in analysis and in the formal
implementation of a solver for hypercube elements.

3 Two-Dimensional Von Neumann Analysis

The procedure for investigating the dispersion and dissipation properties of finite
element methods has been laid out in some detail by Huynh [19], Hesthaven and
Warburton [18], and Vincent et al. [42]. It is broadly classified as a von Neumann
analysis. The procedure was, however, only performed in 1D, with critical insight
into the analytical performance of FR when applied to more realistic problems
overlooked. Extension of the analysis to higher dimension domains was performed
by Lele [26] for various finite difference schemes. This did, however, avoid the in-
creased complexity of finite element von Neumann analysis. To begin our extension
we introduce the 2D linear advection equation:

∂u

∂t
+∇ · F = 0 (14)

F =

[
f

g

]
= ua =

[
au

bu

]
(15)

Flux reconstruction then uses the superposition of the discontinuous and corrected
flux divergence, meaning Eq. (15) can be rewritten as:

∂ui,j
∂t

= −∇ · FδDi,j −∇ · F
δC
i,j (16)
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Taking the following definition of the Jacobian, the computational-physical domain
transformation can be defined:

G =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
=

[
G1 G2

G3 G4

]
and J = |G| (17)

u = J−1û, F = J−1GF̂, ∇ · F = J−1∇̂ · F̂ (18)

where we use ∇̂ to mean [ ∂∂ξ ,
∂
∂η ]T in 2D. From the work of Huynh [19], Cas-

tonguay [9], and Sheshadri et al. [33], Eq.(15) is written in two dimensions as:

∇̂ · F̂δD =

p∑
i=0

p∑
j=0

f̂δDi,j
∂li(ξ)

∂ξ
lj(η) +

p∑
i=0

p∑
j=0

ĝδDi,j
∂lj(η)

∂η
li(ξ) (19)

∇̂ · F̂δC =

p∑
i=0

(
(f̂δIL,i − f̂

δD
L,i )

dhL,i
dξ

+ (f̂δIR,i − f̂
δD
R,i)

dhR,i
dξ

+

(ĝδIB,i − ĝ
δD
B,i)

dhB,i
dη

+ (ĝδIT,i − ĝ
δD
T,i)

dhT,i
dη

)
where we use L, R, B, and T subscripts to mean left, right, bottom, and top
respectively. We will then impose that grid transformations are purely rectilinear,
i.e. G2 = G3 = 0. This is to reduce the number of dependent variables will still
allowing an important form of grid deformation to be investigated. We may now
use Eq. (19) and convert it into a matrix form:

∇̂ · F̂δD = Dξ f̂
δ
i,j + Dηĝ

δ
i,j (20)

∇ · FδD = G−1
1,i,jDξf

δ
i,j +G−1

4,i,jDηg
δ
i,j (21)

To apply the correction function, we need to calculate the interface values around
the element. For the case of generalised central/upwinding with upwinding ratio
α, the common interface fluxes may be written as:

G−1
4,i,j f̂

δI
L = a

(
αG−1

4,i−1,j û
δ
i−1,j,R + (1− α)G−1

4,i,j û
δ
i,j,L

)
(22)

G−1
4,i,j f̂

δI
R = a

(
αG−1

4,i,j û
δ
i,j,R + (1− α)G−1

4,i+1,j û
δ
i+1,j,L

)
(23)

G−1
1,i,j ĝ

δI
B = b

(
αG−1

1,i,j−1û
δ
i,j−1,T + (1− α)G−1

1,i,j û
δ
i,j,B

)
(24)

G−1
1,i,j ĝ

δI
T = b

(
αG−1

1,i,j û
δ
i,j,T + (1− α)G−1

1,i,j+1û
δ
i,j+1,B

)
(25)

where α = 1 gives rise to upwinding and α = 0.5 produces central difference. Hence
the divergence correction can be written as:

∇̂ · F̂δCi,j = aα

(
G−1

4,i−1,jhLlR
T ûδi−1,j −G

−1
4,i,jhLlL

T ûδi,j

)
+

a(1− α)

(
G−1

4,i+1,jhRlL
T ûδi+1,j −G

−1
4,i,jhRlR

T ûδi,j

)
+

bα

(
G−1

1,i,j−1hBlT
T ûδi,j−1 −G

−1
1,i,jhBlB

T ûδi,j

)
+

b(1− α)

(
G−1

1,i,j+1hTlB
T ûδi,j+1 −G

−1
1,i,jhTlT

T ûδi,j

)
(26)
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(a) Schematic showing inclined plane wave
passing through a cell with a geometrically
transformed rectilinear stencil.

k θ φ
z

x
y

(b) Schematic showing inclined
plane wave passing through a cell
with a geometrically transformed
rectilinear stencil.

Fig. 2: Linear advection schematic for two and three dimensions.

where hL is the gradient of the left correction function at the solution points and
again lL are the values of the polynomial basis at the left interface and so on for
R, T , and B. Therefore, by grouping terms by their cell indexing and transforming
each term into the physical domain:

∂ui,j
∂t

=− a
(
G−1

1,i−1,jCLuδi−1,j +G−1
1,i,jC0ξu

δ
i,j +G−1

1,i+1,jCRuδi+1,j

)
− b
(
G−1

4,i,j−1CBuδi,j−1 +G−1
4,i,jC0ηu

δ
i,j +G−1

4,i,j+1CTuδi,j+1

) (27)

where

CL = αhLlR
T CR = (1− α)hRlL

T C0ξ = Dξ − αhLlL
T − (1− α)hRlR

T

(28)

CB = αhBlT
T CT = (1− α)hTlB

T C0η = Dη − αhBlB
T − (1− α)hTlT

T

(29)

Finally, we are here interested in the frequency response of the system, and, im-
portantly to engineers and technicians, how the cell’s orientation relative to an
oncoming wave affects performance. Therefore, we impose a trial solution of the
form:

u(x, y; t) = exp (ik(x cos θ + y sin θ − ct)) (30)

and by substitution into Eq.(15), the advection velocity, a, can be found, which is
shown schematically in Fig. 2a.

a =

[
a

b

]
=

[
cos θ
sin θ

]
(31)

The plane wave can then be projected into the computational domain and
discretised as:

ui,j = v exp

(
ik
((

0.5(ξ + 1)δi + xi
)

cos θ +
(
0.5(η + 1)δj + yi

)
sin θ − ct

))
(32)
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where, for brevity, δi = xi−xi−1 and δj = yj − yj−1 are defined. Inserting Eq.(32)
into Eq.(27), an Eigenvalue problem can be obtained as:

−ikc(k)v =− cos θ
(
G−1

1,i−1,jCL exp
(
− ikδi−1 cos θ

)
+G−1

1,i,jC0ξ +G−1
1,i+1,jCR exp

(
ikδi cos θ

))
v

− sin θ
(
G−1

4,i,j−1CB exp
(
− ikδj−1 sin θ

)
+G−1

4,i,jC0η +G−1
4,i,j+1CT exp

(
ikδj sin θ

))
v

(33)

where <k(c(k)) = <(ω) and =(kc(k)) = =(ω) are the dispersion and dissipation,
respectively, and ω is the modified angular frequency response of the system. BY
studying the trial solution of Eq.(30) it can be understood that if =(ω) > 0 then
the amplitude of the wave will increase and vice versa. Furthermore, if <(ω) 6= k

then a wave will move at a different speed compared to the other waves inside the
packet, causing the quality of the interpolation to be affected as the solution is
advanced in time as the components that make it up move at different speeds. An
important point is the difference between phase velocity ω/k and group velocity
dω/dk. Phase velocity is the speed of a wave in a packet of waves. Group velocity
is the speed of the packet. Therefore, changes to dω/dk, i.e can be thought of more
as a change to the physics due to the numerical method.

Equation (33) can alternatively be cast in the form of an update equation. If
initially Eq.(27) is combined with Eq.(32), then a new matrix, Qi,j , can be defined:

∂ui,j
∂t

= Qi,jui,j (34)

Qi,j =− Ji,j cos θ
(
G−1

4,i−1,jCL exp
(
− ikδi−1 cos θ

)
+G−1

4,i,jC0ξ +G−1
4,i+1,jCR exp

(
ikδi cos θ

))
− Ji,j sin θ

(
G−1

1,i,j−1CB exp
(
− ikδj−1 sin θ

)
+G−1

1,i,jC0η +G−1
1,i,j+1CT exp

(
ikδj sin θ

))
(35)

This definition of the semi-discrete FR operator, Q, can then be used to form what
is called the update equation by imposing some temporal discretisation. As such
we may write:

un+1
i,j = R(Qi,j)u

n
i,j (36)

R33 = I +
τQi,j

1!
+

(τQi,j)
2

2!
+

(τQi,j)
3

3!
(37)

where the superscript denotes the time level, and our update matrix is R. Shown
here is also an example definition for R for a 3-step 3rd-order Runge-Kutta time
integration scheme. Finally, in keeping with von Neumann’s theorems [20,24] and
Banach’s fixed point theorem [23], the spectral radius of R has to be less than or
equal to 1 for stability. ρ(R) 6 1 ∀ k ∈ R.

In recent works by Vermerie et al. [40] and Trojak et al. [38], the Fourier
analysis was extended by fully discretising the equation. This is performed by
taking Eq.(36) and again applying Eq.(30). This results in:

exp (−ik(c− 1)τ)v = λv = exp (ikτ)R(k, τ)v (38)

where the time step from n to n+1 is τ . Hence, rearranging for the modified wave
speed:

c =
i log (λ)

kτ
+ 1 (39)
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where λ are the eigenvalues of exp (ikτ)R. The advantage of this further analysis
is that it gives the dispersion and dissipation relations of the full scheme as would
be experienced when applied as implicit LES.

Lastly, the linear FR operator matrix, Qi,j , can be diagonalised as:

Qi,j = ikWi,jΛi,jW
−1
i,j (40)

where W is a matrix of eigenvectors and Λ is a diagonal matrix of normalised
eigenvalues. From this, the weights of modes used to reconstruct the solution can
be found as:

ui,j = Wi,jβββi,j (41)

where βββ is an array of mode weights used to project ui,j into the functional space
of FR. The posedness of the projection can then be measured for wavenumbers
using the number of the matrix of modes defined as:

κ(Wi,j) =
σmax(Wi,j)

σmin(Wi,j)
(42)

where σ(Wi,j) is a singular value of Wi,j , with the matrix becoming singular as
κ→∞.

The results of this section can then be extended to n-dimensions and, in par-
ticular, the three–dimensional case will be investigated to show the continuation
of trends with higher dimensionality. The analysis can broadly be repeated and is
excluded for brevity, but importantly the prescribed solution is taken as:

u = exp
(
ik(x cosφ cos θ + y cosφ sin θ + z sinφ− ct)

)
(43)

where the angles are as shown in Fig. 2b, and hence the 3D convective velocities
for linear advection are:

a =

cosφ cos θ
cosφ sin θ

sinφ

 (44)

4 Analytical Findings

The analytical methods presented in section 3 allow us to investigate many prop-
erties of FR, however from Eq.(35-37) it can be seen that the functional space of
Q is 8 dimensional, leading to the functional space of ρ(R) being 9 dimensional
(τ, γx, γy,∆x,∆y, k, θ, ι, p). Therefore we need to restrict our investigation to some
key results relating to grid deformation. Firstly, understanding the dispersion and
dissipation (<(ω) & =(ω)) in 2D for both uniform and stretched grids will be
important. Secondly, we wish to understand how higher dimensionality and grid
deformations affect the temporal stability of FR through evaluation of the CFL
limits [13]. Here, the dispersion and dissipation relations will be useful in explain-
ing the trends seen and will aid in linking this work to that of Trojak et al. [37].
The definition of the CFL number in higher dimensions will be taken as:

CFLd = τ

d∑
i=1

ai
∆i

(45)



10 Will Trojak et al.

(a) Dispersion (b) Dissipation

Fig. 3: Upwinded 1D FR, p = 4, with Huynh g2 correction functions for several
geometric expansion ratios.

where d is the dimensionality, τ is the time step and, ai and∆i are the characteristic
velocity and grid spacing in the ith dimension, respectively. The CFL limit is then
the maximum value of CFL at which the scheme is stable in a von Neumann sense.
Finally, we wish to understand if correction functions can be used to alleviate
any effects of deformation by understanding how the scheme properties vary with
correction function. Within this study, the link to the posed nature of the linear
system will be explored with regard to how this relates to the other properties.

4.1 Review of 1D Grid Expansion

Before commencing with the Fourier/von Neumann analysis in 2D, we will give a
brief review of the behaviour exhibited in one dimension, for which more detail can
be found in Trojak et al. [37]. Figure 3 shows the results for Huynh g2 correction
functions for p = 4 on a few geometrically expanding grids.

Starting by considering the dispersion, Fig. 3a shows that expanding grids
cause dispersion overshoot, as is seen by the dispersion relation going above the
line ω̂ = 1. While contractions cause dispersion to undershoot. More interesting is
the impact of the grid on the dissipation as is shown in Fig. 3b. Here expanding
grids are shown to have a region where =(ω̂) > 0 at low wavenumbers, while
contracting grids in the same wavenumber range have =(ω̂) < 0. This implies that
a wave propagating across a contracting grid is more quickly dissipated, whereas
on an expanding grid the amplitude of the wave is increased. Hence, expanding
grids are strictly unstable. This result was first presented in [37] and was confirmed
with numerical experiments.

This characteristic is obviously of importance as it could lead to the scheme
being non-conservative. Hence, the importance of studying this phenomena in
higher dimensions.



Effect of Mesh Quality on Flux Reconstruction in Multi-Dimensions 11

4.2 Effect of Grid Expansion on Dispersion and Dissipation

For the higher dimensional case, we begin by considering the dispersion and dis-
sipation on a uniform grid in two dimensions. We are concerned here with the
primary mode — as FR has multiple modes, this is the one that physically rep-
resents the wave. Although, as was found by Asthana [4], this may not be how
the energy distributes itself. We identify the physical mode as the mode whose
dispersion relation that goes through zero and dissipation relation similar to those
seen in Fig. 3b.

The dispersion and dissipation relations are then shown in Figs. 4 and 5. It is
clear that for all orders FR becomes more dispersive and dissipative at θ = 45◦.
This is more easily seen for the dissipation relation, but in the case of dispersion
is displayed by the indent at k̂ ≈ 3π/4. Furthermore, there doesn’t seem to be
any widening in the range of angles over which FR becomes more dispersive and
dissipative as the order is reduced. By comparison with the results of Lele [26],
where a similar test is performed for standard and compact difference schemes,
FR shows a comparatively smaller change in performance as the angle is varied. It
is thought that this due to the method of polynomial fitting used by FR, namely
that this implementation of FR used a tensor grid of monomials i.e., the number
of solution points is (p+1)d and hence the monomials in the interpolation go from
(ξ0η0, ξ1η0 . . . ξpηp). By contrast, finite differences do not include the cross product
terms, which will become increasingly dominant as the angle is increased.

Moving on, we then consider the impact of non-uniform grids on the character
of the dispersion and dissipation. There are two cases that have been identified
from previous work as being of interest. Firstly, when the grid is expanding, does
this give the same positive dissipation in higher dimensions as seen in the 1D case,
Fig. 3b? Secondly, if positive dissipation is seen in the 2D case, will an orthogonal
contraction help to stabilise the grid? For example, if γx = 1.1 then will setting
γy = 0.9 help to reduce the positive dissipation?

The first of these questions is explored in Figs. 6a & 6b. It is observed in
Fig. 6b that expanding grids do cause positive dissipation in higher dimensions.
This is more clearly displayed for some specific angles in Fig. 7d, where the dis-
sipation is seen to be slightly positive at low wavenumbers. In one dimension,
this behaviour was previously explained that as a wave moves through elements
of different size the group velocity (dω/dk) will change. For an expanding grid,
this leads to low wavenumber energy collecting in elements. The same mechanism
looks to be responsible in higher dimensions.

The next question of whether a contraction orthogonal to the expansion will
help to stabilise the situation is considered in Figs. 6c and 6d. From Fig. 6d,
it can be seen that the answer is yes. However, there is still a region of positive
dissipation for θ < 45◦ and as the incidence angle of the wave approaches θ = 0 the
stabilisation brought about by the contraction decays. The θ = 0 case is identical
to the case of γy = 1.

For completeness, we have included plots of the dispersion and dissipation for
NDG in Fig. 8. By comparing the un-stretched and stretched results of Fig. 8a-
8b to those of Fig. 8c-8d it is clear that the effect of stretching is similar to
that seen with the Huynh g2 corrections in Fig. 6. However, the notable between
NDG and Huynh’s g2 corrections is that NDG exhibits more dissipation at higher
wavenumbers, as well as dispersion overshoot. This is difficult to see precisely in
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Fig. 4: Primary mode dispersion for 2D upwinded FR, with Huynh g2 correc-
tions, at various orders. Normalised wavenumber as radial distance (markers at
π/4 intervals), and element angle of incidence as azimuthal distance.

Fig. 8, but is indicated by the darker band at k̂ ≈ 3π/4. Furthermore, the location
of the zero dissipation contour is different between the two correction functions,
which for NDG is at a higher wavenumber. This is caused by the unstretched NDG
having lower dissipation at lower wavenumbers. As is seen by comparing Fig. 8b
and Fig. 6b.

Lastly, for this investigation into the dispersion and dissipation characteristics
of FR, we wish to make a note on the Nyquist frequency of the elements. As
was also the case for 1D stretched elements, the Nyquist frequency has a depen-
dency on the expansion ratio. This is found from the harmonic mean of the 1D
Nyquist frequencies, then normalised by the element size at that angle. Hence, the
normalised wavenumber is then:

k̂ = k/knq = kmax
{

cos (θ), sin (θ)
}( 1

p+ 1

)√(
cos (θ)

γx

)2

+

(
sin (θ)

γy

)2

(46)
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Fig. 5: Primary mode dissipation for 2D upwinded FR, with Huynh g2 correc-
tions, at various orders. Normalised wavenumber as radial distance (markers at
π/4 intervals), and element angle of incidence as azimuthal distance.

4.3 Effect of Grid Aspect Ratio on CFL Limit

Beyond the resolution of the scheme, is the question of setting up a case and
running it on some machine. For this, knowledge of the temporal stability is key
and we will begin by looking at the effect of the relative size of an element in x and
y on the CFL limits of FR. In this case, the grid is not expanding or contracting,
merely the ratio of ∆x to ∆y is varied.

As can be seen from Fig. 9 there is a clear impact on the CFL limit of FR
when elements are rectangular, with no change in the CFL limit when the waves
are aligned with the grid. What is evident is that the angle of incidence where
the CFL limit is smallest, for a given size ratio, is when a wave is incident at an
angle of tan−1 (∆y/∆x). This angle corresponds to the maximum length across
the element and hence, when the wave is decomposed into x and y components,
the wavenumbers are lowest — i.e., infθ∈R(sup {∆y cos (θ),∆x sin (θ)}) when θ =
tan−1 (∆y/∆x). As the wavenumbers will be at their lowest necessary to form the
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(a) Dispersion, γx = 1.1, γy = 1 (b) Dissipation, γx = 1.1, γy = 1

(c) Dispersion, γx = 1.1, γy = 0.9 (d) Dissipation, γx = 1.1, γy = 0.9

Fig. 6: Two dimensional upwinded FR, p = 3 with Huynh g2 corrections, for dif-
ferent grid expansion factors. Normalised wavenumber as radial distance (markers
at π/4 intervals), and element angle of incidence as azimuthal distance. The solid
black line on the dissipation plots is the contour of zero dissipation.

wave, from the 1D dissipation of FR, the dissipation will also be at its lowest.
Therefore, there is less dissipation in the spatial scheme available to counteract
the negative dissipation of the temporal scheme, hence reducing temporal stability
at θ = tan−1 (∆y/∆x).

4.4 Effect of Grid Expansion on CFL Limit

Now we introduce to the grid an expansion or contraction in x and y, with varying
incident angles. The results of these distortions are shown in Fig. 10. The minimum
CFL limit is seen to be at θ = 45◦, with temporal performance peaking as expected
at θ = 0◦, 90◦. This result agrees with that of Fig. 9. However, this also shows that
the angle of minimum CFL is only dependent on the local element shape, and
in the case investigated here the central element is always square. Furthermore,
when the CFL limit in the quasi-1D case (θ = 0◦, 90◦) is compared to the results
of Trojak et al. [37], the CFL limit is found to be lower than the 1D case. This may
be due in part to the increased modes of the system and their coupling leading
to a less stable system. This decrease is corroborated by numerical tests, and the
analytical reasoning will follow shortly.

A second point to note is that for non-grid-aligned waves the expansion or
contraction in both components affects stability. With a contraction orthogonal
to expansion again helping to stabilise the scheme. This point is subtle, because
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(a) Dispersion: γx = γy = 1 (b) Dissipation: γx = γy = 1

(c) Dispersion: γx = 1.1, γy = 1 (d) Dissipation: γx = 1.1, γy = 1

Fig. 7: Two dimensional upwinded FR, p = 3, with Huynh g2 corrections at selected
incident angles.

if the decomposition of the wave into x and y were linearly independent then
it would be expected that the lowest CFL limit would dominate. However, this
result demonstrates that there is coupling between the x and y components —
which could be used advantageously, as was discussed earlier.

Throughout the analytical tests in which waves were injected at incidence
on a square central element, the Nyquist wavenumber was found to be knq,θ =
knq,0/ cos(θ) for 0◦ 6 θ 6 45◦. This result can be understood in one of two ways.
Firstly that a wave at an angle can draw on more points in the normal direction to
form a fit of higher wavenumbers. Or that the wave can be thought of as being a
coupled decomposition of the wave into the x and y directions, and although it has
been said that these are not independent, this does mean that higher wavenumbers
can be supported.

To understand further why expanding meshes are less stable and contracting
meshes more stable it can be illuminating to consider the 1D linear advection
equation, which for upwinded FR can be written as:

∂uj
∂t

= −J−1
j C0uj − J−1

j−1C−1uj−1 (47)
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(a) Dispersion, γx = γy = 1.0 (b) Dissipation, γx = γy = 1.0

(c) Dispersion, γx = 1.1, γy = 0.9 (d) Dissipation, γx = 1.1, γy = 0.9

Fig. 8: Two dimensional upwinded FR, p = 3 with NDG corrections, for different
grid expansion factors. Normalised wavenumber as radial distance (markers at π/4
intervals), and element angle of incidence as azimuthal distance. The solid black
line on the dissipation plots is the contour of zero dissipation.

CF
L

(a) p = 3

CF
L

(b) p = 4

Fig. 9: Effect of varying: the relative size an element in x and y; the angle of
incidence; and CFL in 2D for upwinded FR. The method of temporal integration
used here was RK44. ( ) ∆y/∆x = tan θ

where C−1 and C0 are defined similarly to CL and C0,ξ in Eq.(28). Then using
Euler’s method to temporally integrate this equation, we find:

un+1
j = unj − τ

(
J−1
j C0unj + J−1

j−1C−1unj−1

)
=
(
I− τJ−1

j C0

)
unj − τJ

−1
j−1C−1unj−1

(48)
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(a) γy = 0.8 (b) γy = 0.9

(c) γy = 1.0 (d) γy = 1.1

Fig. 10: CFL limit for 2D linear advection with FR (p = 4) using Huynh correc-
tion function, showing variation with θ and γx for some set values of γy. Time
integration is RK44.

where the superscript n denotes the time step. If un−mj−m−1(∀m ∈ N) is then recur-
sively substituted, the final form is then:

un+1
j =

1

2

∞∑
m=0

(I− τ(2γ)mC0)(−2γτC−1︸ ︷︷ ︸
T

)mun−mj−m (49)

where we assume the solution is on a geometrically expanding grid in order to
substitute for the Jacobian — hence being only valid for linearly transformed
elements. If we consider that C0 and C−1 are linear operators, then rather than
prescribing a solution, the dynamics of linear operators can be used [5]. So, if the
mesh extends infinitely downwind, then it is sufficient to say that Eq.(49) is stable
when it is a hypercylic orbit. Hence, the stability criterion is that −2γτC−1 = T is
a matrixable linear hypercylic operator. The definition of which is that sup ‖Tn‖ 6
1,∀ n ∈ N, which in turn implies that ρ(T) = 1. What this aims to show is that
the stability criterion is dependent on the product of τ and γ, as well as on C0.
Therefore, as γ increases the maximum stable τ decreases, for constant C−1. This
also explains that although the scheme may be formally unstable, correct setting
of τ for a given γ can lead to a T that is still hypercyclic and give a bounded
solution. However because of the (−1)m this does mean that if Un−1 ⊂ R is the
set of solutions at some time step n − 1, then the solution unj * Un−1 i.e, for a
sinusoidal solution the computed value may exceed the prescribed magnitude.
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4.5 Effect of Grid Expansion of Fully Discrete Dispersion and Dissipation

Following on from the exploration of grid expansion on temporal stability limits,
we will present the fully discretised Fourier analysis in two dimensions. In this
investigation, we look at the dispersion and dissipation of Huynh g2 correction
functions for several expansion ratios. Throughout this investigation as the angle
is swept through from 0−90◦ the time step will be held constant as this is reflective
of practical applications.

Figure 11 displays the dispersion and dissipation relation for Huynh g2 cor-
rection functions when fully discretised with RK44 explicit temporal integration.
It should be noted that there are some anomalous artefacts in the data due to
the complexity of sorting and selecting the eigenvalues. Primarily this shows that
when fully discretised, the instability on expanding grids is still present. This is
then coupled to the same behaviour that was observed by Vermerie et al. [40]
and Trojak et al. [38]. Namely that the gradient of the dispersion can be much
larger and hence the magnitude group velocity can be very large. Also observed,
which is seen here, is that as the explicit time step is increased the dissipation is
reduced, with the largest difference seen at higher wavenumbers. As a result the
wavenumber at which =(ω̂) = 0 (the solid black lines) in Fig 11d & 11f is not ap-
preciably changed compared to the semi-discrete results. However, in Fig 11 there
are regions of significantly increased and decreased dissipation at high wavenum-
bers. The general impact that these results show is that, when fully discretised,
FR becomes more heterogeneous.

4.6 Effect of Correction Functions with Grid Expansion

As was mentioned in section 1, a series of correction functions with peak temporal
stability and spatial accuracy was proposed by Vincent et al. [42], defined by a cor-
rection parameter, ι+. These correction functions exhibited the superconvergence
expected of Nodal DG (Cockburn et al. [12]), however ι+ 6= ιDG as they account
for the variation in the dispersion caused by the discrete temporal integration.
We wish to investigate if the advantage of this family of correction functions is
maintained in 2D or if an analogue can be found. Therefore, the correction func-
tion parameter is varied for different angles and grid expansion rate, the results of
which are presented in Fig. 12. Using Fig. 12c as an example, the peak CFL at ι+
can be seen clearly in the case of θ = 0◦, with its peak value reduced in compari-
son to the 1D case. (This was discussed in section 4.4. However, the clear peak at
θ = 0◦, 90◦ does not significantly persist as the wave angle increases to θ = 45◦,
with the peak becoming substantially flattened. Therefore, the balancing effect
that the modification of correction function has on the dispersion of the scheme
seems to have a limited scope. Also, it seems there is no other correction function
able to achieve the same effect at the intermediate range of angles. Furthermore,
the persistence of the peak CFL limit is not seen as the expansion rate and order
is varied, with ι+, in fact, suffering the most appreciable decay in performance as
the angle is varied, when compared to the other correction functions.

To investigate further the impact of varying correction functions on higher
dimensional problems, we will consider the projection of the solution into the
functional space of FR for linear advection. The method for understanding this
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(a) Dispersion: γx = γy = 1 (b) Dissipation: γx = γy = 1

(c) Dispersion: γx = 1.1, γy = 1 (d) Dissipation: γx = 1.1, γy = 1

(e) Dispersion: γx = 1.1, γy = 0.9 (f) Dissipation: γx = 1.1, γy = 0.9

Fig. 11: Dispersion and dissipation of upwinded FR, p = 3, with Huynh g2 correc-
tions and explicit RK44 temporal integration, τ = 0.18. The radial distance is the
normalised wavenumber (including the effect of angle), and the azimuthal distance
is the angle of incidence to the element. The solid black line on the dissipation
plots is the contour of zero dissipation.

is by studying the posedness of the linear operators. The process of projection
was outlined in section 3. Presented here are the several results showing how the
posedness varies with angle, correction function, and order.

Several insights into the different multidimensional behaviour of FR can be
gained by studying Fig. 13. By comparison of Fig. 13a & 13b it can be seen that
Huynh’s g2 correction function causes the projection to be more ill-posed on aver-
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(a) p = 3, γx = 1.0 & γy = 1.0 (b) p = 4, γx = 0.8 & γy = 1.0

(c) p = 4, γx = 1.0 & γy = 1.0 (d) p = 4, γx = 1.3 & γy = 1.0

Fig. 12: CFL limit for 2D linear advection, at several orders. Varying correction
function parameter, ι, and angle θ. Time integration is RK44. The value of ι+ is
shown as a dashed black line.

age compared to Nodal DG methods. Hence, the superconvergent DG recovering
scheme of Vincent et al. [42] has decreased temporal stability. This is because
the ill-posedness indicates the sensitivity of the reconstruction to change, a more
sensitive reconstruction means that error can result in energy being transferred
to more dissipative modes. This point is important as it means to show that ill-
conditioning is not directly the mechanism for loss. But the movement of energy
to other more dissipative modes is, and the condition number is symptomatic of
that.

Furthermore, in both cases as, across all wavenumbers, the condition number
can be seen to increase with incident angle. When compared with Fig. 10 and
Fig. 12c it can be seen that for a given correction function the CFL limit reaches its
minimum at θ = 45◦, therefore a stark increase in condition number can also cause
a decrease in temporal stability, potentially due to too much transport between
modes.

A result presented by Trojak et al. [37] was that for FR the best points per
wavelength (PPW) performance was seen for p = 4 with the PPW increasing
for orders higher than this. A result that is exhibited by Fig. 13c is that the
condition number for p = 5 schemes is higher than for lower orders and may
have passed a point where increased order is out weighted by inaccuracy in ill-
conditioning. This may explain the optimal result seen and is touching on the
fundamental problem characterised by Runge’s phenomena, that high-order may
introduce accuracy through high-order but may also introduce inaccuracy reflected
by a high condition. A result that cannot be clearly seen in either Fig. 13a or 13b,
however, was exhibited by FR was for θ = 0 the condition number was significantly
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(a) Variation of mode condition num-
ber with angle and wavenumber for
upwinded 2D FR, p = 2, with Huynh
g2 correction functions.

(b) Variation of mode condition num-
ber with angle and wavenumber for
upwinded 2D FR, p = 2, with Nodal
DG correction functions.
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(c) Variation of mode condition num-
ber against order, p, for upwinded 2D
FR, θ = 45◦, with Huynh g2 correc-
tion functions.
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(d) Variation of mode condition num-
ber against order, p, for upwinded 1D
FR, with Huynh g2 correction func-
tions.

Fig. 13: Condition number of various linear FR configurations

higher than that found for 1D FR owing to the naturally poor conditioning of
a 2D system acting as a quasi-1D one. This is linked to the lower CFL number
experienced in this case, as was shown in Fig. 10. To show that the results found in
this section extend to higher dimensions, the von Neumann analysis was repeated
for 3D ’hexi-linear’ grids. The primary result of interest is the increased condition
number of the functional projection and this can be seen in Fig.14. The message
is that, as expected, the ill-posedness of the reconstruction increases with the
order. While small increases in the condition number can give increased temporal
stability, larger increases in condition number tend to act to destabilise the coupled
spatial-temporal scheme.

5 Non-linear Navier-Stokes Equations with Randomised Grids

It is common within the CFD community to use the canonical Taylor-Green Vor-
tex (TGV) [34] test case to assess the numerics of a solver applied to the Navier-
Stokes equations with turbulence — and to that end, there is a plethora of DNS
data available for comparison [6, 14]. However, this case is quite contrived and
ultimately will favour spectral or structured methods due to the Cartesian and
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Fig. 14: Variation of condition number with wave angles and wavenumber for
upwinded 3D FR, p = 3, γx = γy = γz = 1, using Huynh g2 correction functions.

periodic domain, whilst also being unrepresentative of engineering flows that are
often wall bounded and/or have complex geometries. Hence, we propose linearly
deforming the elements of the mesh by jittering the corner nodes to be more rep-
resentative of real mesh conditions. Importantly, these deformations will introduce
cross multiplication into the Jacobian, as well as local regions of expansion and
contraction.

The initial conditions of the TGV being used here are those of DeBonis [14],
where the character of the flow is controlled by the non-dimensional parameters
defined as:

Re =
ρ0U0L

µ
, Pr = 0.71 =

µγR

κ(γ − 1)
, Ma = 0.08 =

U0√
γRT0

(50)

where we will use the standard set of free-variables for the velocity, density, pres-
sure, and gas characteristics:

U0 = 1, ρ0 = 1, p0 = 100, R = 1, γ = 1.4, L = 1 (51)

Here, due to the solver implementation, we use a specific gas constant of unity
and hence, to achieve the required Reynolds and Prandtl numbers, the dynamic
viscosity and thermal conductivity can be set appropriately.

As has been stated, we will take the uniform periodic mesh on the domain
Ω ∈ [−π, π]3, and jitter the corner nodes of the elements that are interior to the
domain. The amount of jitter is calculated using a time seeded random number
shifted to be centred about zero and scaled by a global factor between zero and
unity. The scaling factor is such that zero gives a uniform mesh and unity could
lead to edges of zero length. After jittering, the solution points are then linearly
positioned within the element using the thin plate spline radial basis function
together with the mapping from the uniform to jittered corner nodes. This gives
a linear mapping of uniform solution points to solution points within the jittered
elements. Finally, a quality metric is needed to describe, in a single number, the
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(a) qh =
√
π/6 ≈ 0.7236 (b) qh = 0.7201 (c) qh = 0.7016

Fig. 15: Example slices through a 3D hexahedral mesh to illustrate the mesh
quality metric.

relative quality of the meshes produced. We opted for a volume ratio shape factor,
slightly redefined as:

qh =
6
√
πVh

S
3/2
h

(52)

where Sh is the surface area of the hexahedral element and Vh is the volume of
the hexahedral elements. The quality metric, qh, is then defined as the ratio of the
volume of the element to the volume of a sphere with the same surface area, with
qh =

√
π/6 for a perfect cube. To put this parameter into context, some example

meshes are shown in Fig. 15.
The statistics that will be studied here are the decay of the kinetic energy and

the enstrophy decay rate, which are defined respectively as:

−dEk
dt

= − 1

2ρ0|Ω|
d

dt

∫
Ω

ρ(u2 + v2 + w2)dx (53)

ε =
µ

ρ20|Ω|

∫
Ω

ρ(ωωω ·ωωω)dx (54)

where ωωω = ∇× [u, v, w]T is vorticity and |Ω| is the domain volume.
Fig. 16 & 17 shows the first of these results. First looking at Fig. 16a & 17a

which shows two specific dissipation curves for an uniform and jittered mesh. At
the beginning of the simulation, there is a clear time at which the global energy
increases.

Extending these runs to cover multiple grid qualities, Fig. 16b & 17b, it is
observed that as the grid quality decreases a region where turbulent kinetic energy
increases soon emerges. As time progress, energy dissipation is again seen and the
point of peak dissipation arrives early, moving from t ≈ 8.5 to t ≈ 7.5. The same
behaviour is seen for both p = 2 and p = 4. From comparison of p = 2 and p = 4,
it seems that p = 4 is slightly more robust to grid deformation, as p = 4 was able
to run at qh ≈ 0.7. Whereas for p = 2, qh could not be reduced much below 0.717
for 1203 DoF without completely diverging.

The explanation of this is believed to be that initially the regions in the mesh
that are locally expanding cause an increase in the energy due to the positive dis-
sipation. This was discussed in Section 4.2, that for the linear advection equation,
dissipation is positive at low wavenumbers for expanding grids and negative for
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(a) Selected turbulent kinetic energy dissi-
pation.

(b) Variation of turbulent kinetic energy dis-
sipation with jitter. Dashed contour at zero
dissipation.

Fig. 16: Effect of jitter on turbulent kinetic energy dissipation of the TGV (Re =
1600) for FR, p = 2, with Huynh g2 correction functions on a 403 DoF mesh.
Explicit time step size is ∆t = 1× 10−3.

(a) Selected turbulent kinetic energy dissi-
pation.

(b) Variation of turbulent kinetic energy dis-
sipation with jitter. Dashed contour at zero
dissipation.

Fig. 17: Effect of jitter on turbulent kinetic energy dissipation of the TGV (Re =
1600) for FR, p = 4, with Huynh g2 correction functions on a 1203 DoF mesh.
Explicit time step is ∆t = 1× 10−3.

contracting grids at the same wavenumber. It is thought that as the simulation
progresses, the energy cascade of large scales to small scales then means that more
of the solution lies in the more dissipative higher wavenumber region for both
expanding and contracting grids. Therefore, the net dissipation at a later time is
higher than the uniform case and hence the peak dissipation is earlier. This is
consistent with a lower Re and hence higher global dissipation. We can conclude
that the stability of this case is brought about by the physics of the Navier-Stokes
and cascade of energy from low to high wavenumbers, which sidesteps the problem
of positive dissipation of low wavenumbers on expanding meshes. This result is in-
teresting as it is in slight contradiction to the result of Trojak et al. [37], where FR
was found to be more robust to grid stretching than second order FV for Euler’s
equations. However, in that investigation, the Isentropic Convecting Vortex was
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(a) p = 2 (b) p = 4

Fig. 18: Comparison of TGV enstrophy for 1203 degree of freedom grid with similar
qh.

considered where there was a large convective velocity. This may expose slightly
different properties, although a full explanation is not known.

Studying the effect of jittered grids on enstrophy, shown in Fig. 18, it is clear
that as the grid is stretched the enstrophy increases. This is indicative of an in-
crease in the vorticity, with the rise occurring within t = 0− 1. This is consistent
with the assertion that the energy is being added in the small scales, as at this time
there are only small scales present. Furthermore, if the energy were only added to
the bulk flow, i.e. k = 0, it would not be seen in the enstrophy. After the initial
increase, the enstrophy returns to following the trend of uniform case. However,
in the case of p = 2, Fig. 18a, a larger initial increase is seen followed by a wider
peak. The wider peak is similar in character to that of the uniform case and is due
to the grid being mildly under-resolved in the p = 2 case relative to the DNS.

To provide some reference as to how FR performs relative to an established
method we will use an edge-based Finite Volume (FV) method for comparison.
The FV method is a standard central second order method with L2 Roe smooth-
ing [28] for stabilisation, which has been validated previously [31]. The particular
FR scheme used in this comparison is p = 1, giving second order, the same as the
FV scheme. However, this puts FR at a significant disadvantage as its numeric
characteristics at low order are particularly poor. For example, consider the dis-
persion and dissipation relations in Fig. 19, which, by comparison to the result of
Lele [26], show that FR has noticeably lower resolving abilities when compared
against a second order FD scheme.

With this in mind, we present the results of tests on various jittered grids with
a total of 1703 degrees of freedom in Fig. 20. For the uniform case, the enstrophy
clearly shows that FR is underresolved compared to FV, which is also shown
by a slightly increased rate of dissipation earlier — indicating that the implicit
filter is too narrow. If we now consider the effect of jittering, several things may
be concluded. Firstly, we were unable to run FR with jf = 0.5 as the simulation
quickly became unstable. Secondly, for −dEk/dt it seems that the peak value is less
sensitive with FR than with FV, with central FV seeing some very large amplitude
oscillation in −dEk/dt. This is likely to be rooted in the central differencing at the
interfaces, as if we change to a kinetic energy preserving formulation [21, 46], as



26 Will Trojak et al.

0 :=4 :=2 3:=4 :

k̂

0

:=4

:=2

3:=4

:

<
(!̂

0 )
c = 1 + 0i
DG, p = 1

(a) Dispersion

0 :=4 :=2 3:=4 :

k̂

!:

!3:=4

!:=2

!:=4

0

=
(!̂

0 )

c = 1 + 0i
DG, p = 1

(b) Dissipation

Fig. 19: Dispersion and Dissipation relation for 1D upwinded FR, p = 1, with DG
correction function.
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Fig. 20: Comparison of FR, p = 1 with DG correction functions with a second order
central FV scheme with L2 Roe smoothing both with 1703 degrees of freedom and
∆t ≈ 5× 10−4. A reference DNS solution is provided from [6].

is displayed in Fig. 21, these oscillations are removed and the sensitivity to jitter
is reduced. The enstrophy (Fig. 21b) seems to indicate that a large amount of
what seemed to be resolved energy may have in fact been dispersion induced
fluctuations. However, in both cases FV was able to run with grids up to jf = 0.9
and qh = 0.6382 — not shown — it appears that in these cases the added stability
of the smoothing has greatly helped FV, especially in the central difference case
where running without smoothing caused the case to fail even at low levels of
jitter.

Before moving on, it must be noted that in FR we once again see a dip in
dEk/dt, which is also present to a lesser extent in both versions of FV tested. This
is again linked to the instability caused by locally expanding grids, but in the case
of FV the dip is smaller and is aided by the use of smoothing. The conclusion
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Fig. 21: Comparison of FR, p = 1 with DG correction functions with a second
order KEP FV scheme with L2 Roe smoothing both with 1703 degrees of freedom
and ∆t ≈ 5× 10−4. A reference DNS solution is provide from [6].

for this comparison is that FV is somewhat resilient to degradation to the mesh
quality, with the resilience coming from smoothing for central differenced FV.
This allowed highly warped meshes to be run, but at the expense of accuracy with
excess dissipation affecting the solution. KEP was found to be far more resilient
and could even run without smoothing. FR, when run at a low order, was unsuited
to this problem, but did see less degradation compared to central FV and there
is the potential for p = 1 FR to equally benefit on poorer quality meshes from
smoothing via a different Riemann solver, such as that of Roe [30].

The result shown in this section clearly highlight a key issue of FR, that it
works on the strong conservative form of the equation. Consequently, it relies on
the accurate interpolation and accurate calculation of gradients to make sure that
the scheme does not stray far from conservation. However, this implementation
does not strictly enforce conservation and hence when inaccuracy in the gradient
or interpolation is introduced there is no remedial action taken. Some recent work
that aims to fix this issue, see Abe et al. [1–3], where the common interface values
are used to enforce conservation. Following from the results of the present work,
these extensions to FR should be considered essential.

6 Conclusions

Through this work, we have presented a theoretical extension of the FR von Neu-
mann analysis to higher dimensions. This allowed as to understand the character
of the dispersion and dissipation relations of FR as the incident angle of a wave
was varied. Differences were noted between the behaviours of FR and finite dif-
ferencing methods, primarily that FR saw a lower variation in character with the



28 Will Trojak et al.

angle of incidence. The effect of higher dimensionality on the CFL limit was also
found, with higher dimensionality causing a reduction in the CFL limit.

Investigations were then performed on deformed meshes and theoretically, the
same behaviour was seen in two dimensions as in one. Specifically, that expanding
meshes cause instability and contracting meshes cause excess dissipation, however,
when coupled together the effects can act to cancel each other out. Numerical
experiments were subsequently performed using the Taylor-Green vortex case, but
with the element corner node positions jittered. Tests showed 5th order to be more
resilient to poor quality meshes than 3rd order, but in both cases, the effect of
localised regions of expansion are thought to be responsible for an initial increase
in the kinetic energy of the solution. The appearance of smaller turbulent scales
within the TGV solution as time progressed then counteracted this effect, as high
wavenumbers on locally contracting regions experience excess dissipation. Lastly,
a comparison was made between FR and a second order FV method. It was found
that FR was more resilient to mesh deformation that FV methods, however, FR
is far from optimal when running at second order. In both cases, it recommended
that kinetic energy presenting/conservation methods should be used as they will
greatly increase resilience to mesh quality.
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A Nomenclature

Roman

a convective velocity in x
b convective velocity in y
c(k) wavespeed at wavenumber k
C0ξ centre cell FR matrix in ξ

C0η centre cell FR matrix in η

CL left cell FR matrix
CR right cell FR matrix
CB bottom cell FR matrix
CT top cell FR matrix
Dξ ξ first derivative matrix
Dη η first derivative matrix
hL & hR left and right correction functions
hB & hT bottom and top correction functions
knq solution point Nyquist wavenumber, (p+ 1)/δj
k̂ knq normalised wavenumber, [0, π]

lk kth Lagrange polynomial
p solution polynomial order
qh element shape factor
Q spatial scheme matrix
R update matrix
u primitive in real domain
Greek

γ grid geometric expansion factor
δj mesh spacing

η 2nd computational dimension variable
ι VCJH scheme correction function variable
ι+ variable ι for peak temporal stability
κ(A) condition number of matrix A

ξ 1st computational dimension variable
ρ(A) spectral radius of matrix A

τ time step
ΩΩΩ solution domain

ΩΩΩn nth solution sub-domain

Ω̂ΩΩ standardised sub-domain
Subscript

•B variable at bottom of cell
•L variable at left of cell
•R variable at right of cell
•T variable at top of cell
Superscript

•T transpose

•δ local polynomial fit of value

•δC correction to value

•δD localised discontinuous polynomial fit of value

•δI common interface value based on local polynomial fit of value
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•̂ transformed variable
• locally fitted polynomial of variable
Other

∇̂ gradient operator in computational domain
=(z) imagine part of z given z ∈ C
<(z) real part of z given z ∈ C
C set of complex number
R set of real numbers
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