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Effect of Flux Function Order

and Working Precision in Spectral Element Methods
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We investigate the effect of aliasing when applied to the storage of variables, and their recon-
struction for the solution of conservation equations. In particular, we investigate the effect on
the error caused by storing primitives versus conserved variables for the Navier–Stokes equa-
tions. It was found that storing the conserved variables introduces less dissipation and that the
dissipation caused by constructing the conversed variables from the primitives grows factorially
with order. Hence, this problem becomes increasingly important with the continuing move to-
wards higher orders. Furthermore, the method of gradient calculation is investigated, as applied
to the viscous fluxes in the Navier–Stokes equations. It was found that in most cases the differ-
ence was small, and that the product rule applied to the gradients of the conserved variables
should be used due to a lower operation count. Finally, working precision is investigated and
found to have a minimal impact on free-stream-turbulence-like flows when the compressible
equations are solved, except at low Mach numbers.

I. Introduction

Over the course of the last three decades Large Eddy Simulation (LES) has become increasingly used for the
exploration of flow physics. Looking forward to how CFD will be used tomorrow, NASA CFD Vision 20301 predicts
that hybrid RANS/LES and wall-modelled LES will become increasingly used in aerospace design. These methods
are likely to prevail until sufficient technological developments allow for wall-resolved LES to become a feasible part
of the design process. One effect of this continuing shift from low fidelity modelling to high fidelity simulation is that
the gap is bridged, in part, by adapting existing RANS tools for LES. For example, ANSYS Fluent began as a tool
for solving the RANS equations, but has increasingly developed LES capability.2 While, more recently, some tools
have been developed from the outset to be spectral or capable of high order, for example Nektar++,3 PyFR,4 etc.

Through this journey from predominantly low order RANS to LES and then onto high-order several dogmas
have developed that have continued into recent methods. Chief among these is the form of the variables stored
when solving a conservation equation. In the context of fluid mechanics, this commonly comes down to whether
the primitive or conservative variables are stored. To the knowledge of the authors, the only justification given
for this choice one way or the other comes from Fluent’s documentation, where the given arguments are ‘it is a
natural choice when solving incompressible flows’ and ‘to obtain more accurate velocity and temperature gradients
in viscous fluxes, and pressure gradients in inviscid fluxes’. Yet, which variables are stored is an important feature
of a scheme, as it will impact how the flux terms are constructed and their relative order. Challenging this received
wisdom forms the primary question to be answered. In particular: is the error introduced through the construction
of the terms required in fluids dynamics sufficient for one storage method to be favourable?

In fluid dynamics, it is common to require second derivatives to simulate viscous effects. In turn, this requires
gradients of the primitives. Several methods are actively used to calculate these terms, the Senga2 code5 uses
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the product rule on the gradient of the conserved variables, whereas several industrial codes directly calculate the
gradient of the primitives. Due to the differences in the two methods, the viscous fluxes will have different orders.
We wish to understand if these differences are significant, and, secondly, if one method is more efficient.

A related topic that has seen much work is relating to spectral aliasing in LES and the mechanisms by which
it is brought about. For example, see Moser et al.,6 Blaisdell et al.,7 and Kravchenko et al.8 These works focus
on the aliasing brought about in spectral methods by the differentiation stage of a non-linear flux. It was broadly
concluded that the skew-symmetric form can reduce the effect of aliasing, without resorting to active de-aliasing
techniques. But, depending on the flow conditions, occasionally the skew-symmetric aliasing error can be large. A
more recent study, by Winters et al.,9 compared two splitting techniques when applied to the DG method. These
investigations are mentioned as this work was found to be the most similar in nature to the problem confronted
here. However, throughout the work on the skew-symmetric form little attention has been paid to which variables
are stored, yet the same spectral analysis would indicate it could have a noticeable impact.

The second dogma that we wish to investigate is whether it is valid that variables should be stored in double
precision, or if single precision is actually adequate. This links to the question of which variables are stored, as
different operation counts will cause the effect of working precision to be different.

In most typical calculations the norm is to use double precision throughout, however, as the size of problems
to be tackled grows so too does the memory usage. Therefore, it would be beneficial for both reducing memory
overhead and increasing computational speed if single precision were used. Further to this, some hardware —
notably many GPUs — include only comparatively few double precision arithmetic units. Therefore, the increase
in computational speed can be as much as 32 times by moving move from 32 to 64 bit precision. Some investigation
into this question has been performed, notably by Homann et al.,10 on the DNS of incompressible homogeneous
turbulence using a variable precision incompressible pseudo-spectral scheme. They observed little to no difference
when the precision was changed, but this may have been due to the explicit enforcing of incompressibility. Another
investigation into precision was presented in the review paper by Bailey,11 which spanned several regimes of flow
physics. This investigation, however, was in the opposite direction, looking at the effect of using 128-bit precision.
It was found that it could be important and concluded that better support of adaptive precision should be made
by software and hardware. Therefore, we wish to investigate if the same insensitivity to working precision is true
for high order polynomial based methods, or as Bailey11 found it could, in fact, be important.

The remainder of this paper is structured around a high-order numerical method introduced in section II. The
theory of polynomial aliasing and the effect of the order is presented in section III. We then go on to set out
in section IV the variable forms and conversion methods that will be investigated. Then, in sections V & VI,
numerical experiments with Euler’s equations and the Navier-Stokes equations are performed respectively. This
is followed by the variation of the working precision when applied to the Navier-Stokes equations. Finally, the
conclusions are presented in section VII.

II. High-Order Flux Reconstruction

This paper aims to investigate how the aforementioned dogmas are affected in the context of a spectral element
method. To provide a flexible framework for performing simulation at various orders of accuracy, we will make use of
a particular spectral element type method called Flux Reconstruction (FR).12,13 This section aims to introduce the
methodology behind FR, helping to inform the later investigation into aliasing. FR is broadly based on the techniques
used in Nodal Discontinuous-Galerkin,14 and, as such, we begin by subdividing the domain Ω into n sub-domains.

Ω=

N⋃
n=1

Ωn, and Ωi∩Ωj=∅∀i 6=j (1)

If we then focus on the method as applied to 1D conservation equations, we can define a spatial transformation
from the physical sub-domain Ωn ∈ [xn,xn+1] to a reference domain Ω̂∈ [−1,1]. This can be achieved via the

mapping Γn :x→ξ, where x is a variable in Ωn and ξ is in Ω̂. Γn is then defined as:

ξ=Γn(x)=2

(
x−xn

xn+1−xn

)
−1 (2)

If we proceed to solve the 1D first order conservation equation, then:

∂u

∂t
+
∂f

∂x
=0 (3)
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where u is the conserved variable and the flux is f=f(u). Within each sub-domain, we use the data stored at
a series of points to form a local polynomial of u and f:

ûδ(ξ)=

p∑
i=0

ûδi li(ξ) (4)

f̂δD(ξ)=

p∑
i=0

f̂δi li(ξ) (5)

where p is the order, the superscript delta symbolises that the polynomials are local to one element, and the hat
marks that the variable has been transformed from the physical to reference domain. In the case of the flux, there
is also a D to symbolise it is currently only a fit based on the data and hence not strictly continuous. Here, the
polynomial basis, li(ξ), is the Lagrange basis, defined as:

li(ξ)=

p∏
j=0
j 6=i

ξ−ξi
ξj−ξi

. (6)

Now the approximation in Eq. (4) can be used to extrapolate to the edges of the element at ξ=±1. This data
can be combined with the edge values of the surrounding elements to calculate a common value at each element
interface. This is key in enabling the solution between elements to be made continuous. There are several methods
of finding a common value, for example, central differencing can be used, but at the expense of needing smoothing.
Alternatively, a method such as a Riemann solver can be used that accounts for the upwind direction in hyperbolic
equations15 and consequently adds some stabilising dissipation.

With left and right common interface values calculated, defined as f̂δIL and f̂δIR , the common value then needs
to be propagated into the element to form a continuous solution. This is achieved via correction functions, hL
and hR, that have the following properties:

hL(−1)=hR(1)=1 (7)

hR(−1)=hL(1)=0. (8)

There are several families of correction function, with it being known that the choice can have a large impact on
the behaviour of the method.16–19 The correction to the flux term is calculated as:

f̂δC=(f̂δIL −f̂δDL )hL+(f̂δIR −f̂δDR )hR (9)

then formulating the corrected flux gradient:

∂f̂δ

∂ξ
=
∂f̂δD

∂ξ
+(f̂δIL −f̂δDL )

dhL
dξ

+(f̂δIR −f̂δDR )
dhR
dξ

(10)

lastly by using the transformed equation:

∂ûδ

∂t
+
∂f̂δ

∂ξ
=0 (11)

with Eq. (10), a suitable temporal integration method may be used to advance the solution in time.
One advantage of FR is that by varying the number of points and hence the order of the interpolation in

Eq. (4 & 5), the order accuracy of the scheme may be changed with relative ease. Hence, this will easily allow
for the effects of aliasing under investigation here to monitored at different orders, with the aim of drawing further
conclusions for the development of high-order methods.

III. Discrete Error Mechanisms

In this section we wish to study the mechanism by which errors can enter approximate solutions. In particular,
we do this from a polynomial point of view, which is most applicable to an approximation in a finite element
framework. Let us start by studying a simple generalised conservative equation:

∂u

∂t
+
∂f

∂x
=0 (12)
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In this case, we will solve on the periodic domain [−1,1], for simplicity. Then the effect of solving this numerically
is that we have some finite basis. Let us then set that the solution, u, may be constructed as some pth order
polynomial. In this case, we will use the Legendre basis:

u=

p∑
i=0

ũiψi(x) (13)

where ψm is the mth order Legendre polynomial of the first kind. If the flux function is then f=f(un) for n∈N,
then for the flux we get:

f=

np∑
i=0

f̃iψi(x) (14)

However, as previously stated, the functional space of the numerical solver is limited to be pth order. We wish to
project the high order flux on to this space using an `2 projection, which is commonly used in Galerkin methods.14

Starting by defining the projected flux as:

fP =

p∑
i=0

f̃Pi ψi(x) (15)

we wish to minimise: ∫ 1

−1

(
f−fP

)2
dx (16)

By using the modal presentation and the orthogonality of Legendre polynomial the optimal projection is then
just the truncation of Eq. (14) to pth order. We can now define the truncation error as:

eT =f−fP =

np∑
i=p+1

f̃iψi(x) (17)

This is not the complete picture however, as in nodal methods such as FR, a Galerkin projection is not typically
employed. Instead, Lagrange polynomials are used to form a polynomial approximation from point values. This
may be presented in 1D as:

fδ=

p∑
i=0

f(xi)li(x) (18a)

li(x)=

p∏
j=0
j 6=i

x−xj
xi−xj

(18b)

Due to this representation fδ and fP are not strictly equal. We may then define a projection error as:

eP =fP−fδ=

p∑
i=0

f̃iψi−
p∑
i=0

f(xi)li(x) (19)

and hence:
fδ=f−eT−eP (20)

Of the two components of the error, the truncation error is unavoidable due to the need to use a finite basis. The
projection error term on the other hand is more problematic as it is this term that introduces polynomial aliasing
into the solution. Furthermore, due to the dependence of eP on the point location it is difficult to gain insight
into general trends. Through Taylor’s theorem though we can look at the effect of both eT and eP . Let us begin
by defining the interpolation remainder as:

Rpf=f−Lpf=f−fδ (21)

where Lp is a pth order linear interpolation operator. Using Taylor’s theorem it can then be stated that:20

Rpf(ξ)=
f(p+1)(ε)

(p+1)!

p∏
i=0

(ξ−ξi) (22)
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where we restrict ξ∈ [−1,1], ξi are the interpolation points, and ε∈ [−1,1] is dependent on ξ.
As an example let us modify the Burger’s equation by squaring the conserved variable, which leads to:

∂u2

∂t
+
∂u4

∂ξ
=0 (23)

This gives the opportunity for information to be stored in two ways comparable to methods used for Euler’s
equations — namely, storing u or u2 and forming the flux term by either squaring u2 or raising u to the power
of four. This gives two possible flux polynomials when transformed into the computational domain:

v̂2(ξ)=(û2)2= f̂2=

2p∑
i=0

f̃2,iψi (24)

v̂4(ξ)= û4= f̂4=

4p∑
i=0

f̃4,iψi (25)

where we have defined v to be the variable that is stored. To understand how errors may then enter the solution
we wish to understand the scaling of the remainder of the flux interpolation to a finite polynomial space of order
p. The maximal norm can then be used to give an estimate as:

‖Rpf‖∞6
1

(p+1)!
‖qp+1‖∞‖f(p+1)‖∞. (26)

Here qp+1 is defined as:
qp+1=(ξ−ξ0)(ξ−ξ1)...(ξ−ξp) (27)

with ξi being the points at which the value of f is stored. Taking the domain to be [−1,1] therefore ‖qp+1‖∞62.
We now use Eqs. (24 & 25) to refine the remainder estimates, which requires a bounding value of ‖f(p+1)‖∞.
Firstly, it is known that the maximum absolute value of a Legendre polynomial is at ξ=±1 (ξ∈ [−1,1]) and, due
to the recursive definition of Legendre polynomials, the maximum value of the derivative is at ξ=±1. If the value
of a differentiated Legendre polynomial at ±1 is:

dmψn(±1)

dξm
=

(±1)n−m(n+m)!

2mm!(n−m)!
(28)

A consequence is that, for a given set of differentiated Legendre polynomials, {ψ′n,ψ′′n,...,ψ(m)
n }, the maximum value

in this set is the edge value of the mth derivative. Hence, a bound can be placed on ‖f(p+1)‖∞ using Eq. (28) and
the maximum Legendre mode coefficient as:

‖f(p+1)
2 ‖∞6

[
2(3p+1)!

2p+1(p+1)!(p−1)!

]
max

i∈{0...2p}
|f̃2,i| (29)

‖f(p+1)
4 ‖∞6

[
2(5p+1)!

2p+1(p+1)!(3p−1)!

]
max

i∈{0...4p}
|f̃4,i| (30)

Hence, the interpolation remainder may be bounded as:

‖Rpf2‖∞64

[
(3p+1)!

2p+1(p−1)![(p+1)!]2

]
max

i∈{0...2p}
|f̃2,i| (31)

‖Rpf4‖∞64

[
(5p+1)!

2p+1(3p−1)![(p+1)!]2

]
max

i∈{0...4p}
|f̃4,i| (32)

It can be seen by inspection that:
(3p+1)!

(p−1)!
6

(5p+1)!

(3p−1)!
, ∀p∈N (33)

From this, there are two conclusions that can be drawn. Firstly, the interpolation remainder of f4 will always be
bigger than f2. Secondly, the difference between the remainders will grow factorially fast as the order is increased.
Therefore, higher order methods will be far more affected by this mechanism of error introduction.

5 of 21

American Institute of Aeronautics and Astronautics



By reconsidering Eq. (23) it is apparent that we are actually concerned with approximating the derivative of
the flux. To calculate this the remainder may be differentiated to:

R′pf=
df

dx
− d

dx
Lpf=

d

dx
Rpf (34)

Following this through to differentiate the Taylor theorem result of Eq. (22) we get:

R′pf(ξ)=
f(p+1)(ε)

(p+1)!

d

dξ

p∏
i=0

(ξ−ξi), ξ∈ [−1,1] (35)

Again finding the maximal norm:

‖R′pf‖∞=
p

(p+1)!
max
i∈{0..p}

(‖qip‖∞)‖f(p+1)‖∞ (36)

defining qip as:

qip=

p∏
j=0,j 6=i

(ξ−ξj) (37)

If we then apply the results of Eqs. (31 & 32), it is demonstrated that the primary difference in the gradient
remainder is a factor of p.

Also, within the FR algorithm, we require the interpolated values of the flux at the interfaces. This can be
more straightforwardly calculated, i.e. Rpf(±1).

Rpf(±1)=
f(p+1)(ε)

(p+1)!

p∏
i=0

(±1−ξi) (38)

We will not consider the infinity norm in this case, as Eq. (38) gives sufficient details. The main feature of note
is that the behaviour of this remainder is primarily influenced by the interpolation point locations. For example,
if ξ0=−1 and ξp=1, as in a Gauss–Lobatto quadrature, the aliasing error introduced through interpolation to
the edges would be zero. However, for other reasons explored by Castonguay21 and Roe22 this is problematic in
higher dimensions. By comparing the remainder due to differentiation and interface interpolation, it can be seen
that the differentiation gives a remainder that is approximately p times bigger. This indicates that the error that
will dominate is due to the differentiation of polynomials experiencing aliasing.

IV. Primitive and Conserved Variables

IV.A. Euler’s Equations

We will begin by considering the 1D Euler’s equations in the conservative form.

∂Qc

∂t
+
∂f(Qc)

∂x
=0 (39)

for

Qc=

 ρρu
E

, and f(Qc)=

 ρu

ρu2+p

u(E+p)

. (40)

The concern is what information should be stored between time steps, while still solving this equation, and
considering the previous section what will the effect be on the flux function order.

IV.A.1. Conserved Variable Computation

In an implementation where the conserved variables are not stored directly, if the conserved form of Euler’s
equations is to be solved, then the conserved variables must be computed at some stage.
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Qp→Qc (41a)ρu
p

→
 ρ

ρu
p
γ−1+ 1

2ρ(u
2)

=O

 ξpξ2p
ξ3p

 (41b)

This transformation is shown in Eq. (41). It should be clear that if Qp is represented by a polynomial of order p,
then the terms ρu, ρv, and ρw will be polynomials of order 2p, while u(E+p) will be of order 3p. Therefore, the
energy equation will be most impacted by truncation and aliasing and, furthermore, the spatial variation in Qp will
not have to be significant before truncation and aliasing occurs due to the high degree of the energy equation here.

IV.A.2. Inviscid Flux Computation

In most implementations seen by the authors, when the primitives are stored they are also subsequently used to
form the flux, as opposed to using Qc. Therefore, the order of the flux formed from the primitives is:

Qp→f (42a)ρu
p

→
 ρu

ρu2+p

u( γp
γ−1+ 1

2ρ(u
2))

=O

ξ2pξ3p
ξ4p

 (42b)

If the conserved variables are used instead, we obtain:

Qc→f (43a) ρρu
E

→


(ρu)
(3−γ)(ρu)2

2ρ +(γ−1)E
(ρu)
ρ

(
γE− 1

2(γ−1) (ρu)
2

ρ

)
=O

 ξp

ξ2p/ξp

ξ3p/ξ2p

 (43b)

Here we have been somewhat careless with notation. It is intended for O(ξ2p/ξp) to mean a 2pth order polynomial
divided by a pth order polynomial. If the polynomial 1/O(ξp) is then expanded about zero to form a series of
monomials, the series is O(ξ∞). From this, we can see that in Eq. (43) we have avoided the ξ4p term, but at the
expense of dividing by ρ. This raises the question of whether this formulation is more accurate — specifically, is
the convergence of the 1/ρ series sufficiently fast to reduce aliasing? It may be possible to extend the analysis of
section III to include reciprocals using the work of Leslie,23 however so far it has not been possible to provide a
bound. Therefore, this effect will be investigated numerically. Importantly, though, this storage method avoids the
error introduced through the conversion in Eq. (41).

Another option that will be explored is storing the conserved variables but with energy substituted for pressure,
Qc+p. The reason being that in industrial codes pressure is used frequently and this option would reduce the work
involved in converting an implementation. Hence, the conversion from Qc+p to the flux, f, is:

Qc+p→f (44a) ρρu
p

→


(ρu)
(ρu)2

ρ +p
(ρu)
ρ

(
γp
γ−1+ 1

2
(ρu)2

ρ

)
=O

 ξp

ξ2p/ξp

ξ3p/ξ2p

 (44b)

This method will also require a conversion step to retrieve the conserved variables if Eqs. (39 & 40) are to be
solved. This will then introduce aliasing of order:

Qc+p→Qc (45a) ρρu
p

→
 (ρ)

(ρu)
p
γ−1+ 1

2
(ρu)2

ρ

=O

 ξp

ξp

ξ2p/ξp

 (45b)
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This method has the potential to reduce the aliasing in forming the conserved variables and flux, as there is no
longer the ξ4p that is present in Eq. (42). However, this is again dependent on the nature of 1/ρ.

IV.B. Navier–Stokes Equations

To confront more complex problems of fluid dynamical relevance, it is essential to consider the Navier–Stokes
equations, written in the 3D conservative form as:

∂Qc

∂t
+∇·F(Qc,∇Qc)=0 (46)

where
∇·F=(f inv−fvis)x+(ginv−gvis)y+(hinv−hvis)z (47)

If we take the bulk viscosity, µb, to be zero, then fvis can be defined as:

µ


0

τxx

τxy

τxz

uτxx+vτxy+wτxz+ κ
µTx

=µ


0

4
3ux− 2

3(vy+wz)

uy+vx

wx+uz

u(43ux− 2
3(vy+wz))+v(uy+vx)+w(wx+uz)+ κ

µTx

 (48)

with gvis and hvis similarly defined.
The importance of considering this equation is that — due to phenomena such as the energy cascade — in

a method which does not suffer from polynomial aliasing, aliasing will arise in LES anyway, due to the partial
resolution of vortical motions. Hence, for turbulent flows, any difference is likely to be more marked as truncation
and polynomial aliasing tends to amplify the numerical aliasing.

Clearly for the case when primitive variables are stored, the gradients of the primitive can be directly calculated
and used to form the viscous flux. However, when the conserved variables are stored there are two options available
to form the gradients needed here: convert the conserved variables to the primitives and calculate the gradients
needed directly: 

ρ

ρu

ρv

ρw

E

→

ρ

u

v

w

p

→


ρx ...

ux ...

vx ...

wx ...
cv
γ−1(ρ−1px−ρ−2pρx) ...

; (49)

Or calculate the gradient of the conserved variables and use the product rule to convert them to what is needed:
ρx ρy ρz

(ρu)x (ρu)y (ρu)z

(ρv)x (ρv)y (ρv)z

(ρw)x (ρw)y (ρw)z

Ex Ey Ez

→

ρx ρy ρz

ux uy uz

vx vy vz

wx wy wz

Tx Ty Tz

. (50)

These two options can be more simply written as:

Qc→ Qp→∇Qp (51)

Qc→∇Qc→∇Qp (52)

where ∇Q is the gradient of Q. Here the final row of ∇Q is the gradient of temperature, ∇T , which for convenience
is incorporated into the calculation of the viscous flux.
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The method for calculating the required gradients from the product rule, applied to the conserved variable
gradient formulation, is:

1

ρ


ρρx ...(

(ρu)x−ρ−1(ρu)ρx
)

...(
(ρv)x−ρ−1(ρv)ρx

)
...(

(ρw)x−ρ−1(ρw)ρx
)

...(
Ex−ρ−1Eρx

)
−
(
(ρu)ux+(ρv)vx+(ρw)wx

)
...

=


ρx ρy ρz

ux uy uz

vx vy vz

wx wy wz

Tx Ty Tz

 (53)

The polynomial orders of this step are then:

1

ρ


ρρx(

(ρu)x−ρ−1(ρu)ρx
)(

(ρv)x−ρ−1(ρv)ρx
)(

(ρw)x−ρ−1(ρw)ρx
)(

Ex−ρ−1Eρx
)
−
(
(ρu)ux+(ρv)vx+(ρw)wx

)

=

O


ξp−1(ηζ)p

ξp−1(ηζ)p/(ξηζ)p+ξ2p−1(ηζ)2p/(ξηζ)2p

ξp−1(ηζ)p/(ξηζ)p+ξ2p−1(ηζ)2p/(ξηζ)2p

ξp−1(ηζ)p/(ξηζ)p+ξ2p−1(ηζ)2p/(ξηζ)2p

ξp−1(ηζ)p/(ξηζ)p+ξ2p−1(ηζ)2p/(ξηζ)2p+ξ2p−1(ηζ)2p/(ξηζ)p



(54)

Again, it should be clear that the momentum and energy (rows 2-5) terms experience the most aliasing, although
it is not clear what effect that the division will have on aliasing. However, it is likely that the decay rate of the
infinite quotient series will be fast in most cases. This will be dependent though on the nature of the function
ρ, especially when higher Mach number flows are considered with large spatial variations in the density field.

Table 1: Variable storage schemes to be compared

Type Primary Storage Stress Tensor Calculation

A Qp Qp→∇Qp

B Qc Qc→Qp→∇Qp

C Qc Qp→∇Qc→∇Qp

D Qc+p Qc+p→Qp→∇Qp

Table 1 summaries the methods of variable storage and gradient calculation that will be investigated for the
Navier–Stokes equations and Euler’s equations (where applicable).

At this point, we wish to link the ideas presented in Section III with the methods of this section. It should
be clear that in order for this form of error to be incorporated into the solution, at some stage interpolation or
polynomial fitting must be used within the calculation. For FR, this arises when the gradient is calculated or the
edge points are interpolated from the points inside the element. However, if only the nodal values are used, as is the
case in second-order Finite Volume (FV) methods, then there is no mechanism by which this error mechanism can
affect the solution. Take the example of converting primitive variables to conservative variables, and back again:

Qp→Qc→Q′p. (55)

It should be apparent that beyond any rounding error introduced in the floating-point arithmetic, Qp = Q′p.
Therefore, the means of variable storage will not affect FV but will affect any method that in some way interpolates
or fits a polynomial. To test this claim a second order FV method was subjected to some investigations presented
later and the difference was found to be of the order of machine accuracy.

V. Isentropic Convecting Vortex

To evaluate the impact of the changes suggested in Section IV we will begin by studying the effect on the error
and total kinetic energy on the isentropic convecting vortex (ICV).24 The ICV is of interest as it is an analytical
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solution to Euler’s equations and hence allows for the error at a given time to be calculated. One problem that we
are confronted with when using high order, the ICV, and a periodic domain, is that the solution is only guaranteed
to be C0 continuous. This can be understood by considering the initial condition:

ρ=

(
1− (γ−1)β2

8γπ2
exp(1−r2)

) 1
γ−1

(56a)

u=u0+
β

2π
(y0−y)exp

(
1−r2

2

)
(56b)

v=v0+
β

2π
(x−x0)exp

(
1−r2

2

)
(56c)

w=0 (56d)

p=

(
1− (γ−1)β2

8γπ2
exp(1−r2)

) γ
γ−1

(56e)

r2=(x−x0)2+(y−y0)2 (56f)

where u0 and v0 are the advective velocities and β is the vortex strength (typically β=5 is used). To set the initial
values for Qp etc. the nodal values of the initial condition are used, as opposed to a Galerkin projection. From
Eq. (56), it can be seen that as the distance r is increased the vortex slowly decays and, on a finite but periodic
domain, this will lead to discontinuities in the gradient. This is a point that will be of importance later when reviewing
results and was explored by Spiegel et al.25 where some interesting plots of shear near the boundaries are presented.

The metrics that we will use to review the accuracy are the point averaged absolute error in the density:

e(t)=
1

Np

Np∑
i=1

|ρi−ρ(xi,t)|2 (57)

and the total kinetic energy:

Ek(t)=
1

2|Ω|

∫
Ω

ρV·Vdx (58)

where |Ω| is the domain volume.
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0
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0.4

0.6
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1
·10−4

t

e(
t)

Figure 1: Variation of error in ICV density with time for FR, p=4, using methods A, B and D on 16×16×2 and
20×20×2 element grids.

We begin by investigating the effect of storing the primitive variables (A), conservative variables (B), and
conservative variables with energy substituted for pressure (D) on the error. This is shown in Fig. 1. Clearly,
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method A has the lowest levels of error followed by D then B and this ordering does not change as the grid is
refined. This result makes clear that storing the pressure instead of energy can make a marked difference to the
scheme. In schemes (B) and (D), as the stored variable-to-flux conversation is the same, the origin of the difference
can be found to be from the conversion from stored variable to conserved variable that occurs, Eq. (45).

The result of the error increasing for (B) and (D) compared to (A) may be thought to be contrary to the expected
outcome. However, to understand what is going on let us now consider how the kinetic energy changes with time.

0 2 4 6 8 10
−1

−0.5

0

0.5

1
·10−7

t

E
k
−
E

k
(0
)

(a) 16×16×2 elements.

0 2 4 6 8 10
−2

−1

0

1

2
·10−8

t
E

k
−

E
k
(0
)

(b) 20×20×2 elements.

Figure 2: Variation in total kinetic energy of the ICV, FR p=4, for two grid resolutions. using methods A, B, and
D.

Figure 2 shows how the kinetic energy in the domain changes with time. For both grid resolutions, the rate
of kinetic energy dissipation of A is higher than B and D, while B and D are similar. B and D show far less
dissipation with the dissipation of method B being less than D in the higher resolution case, Fig. 2b. The mechanism
responsible for this behaviour is that the reduction in the flux function order and the change to the stored to
conservative conversions, reduces to the error introduced via truncation and projection. This in turn increases
the resolution of the schemes (B) and (D) as higher wavenumbers can be resolved without causing excess error.
To understand how this is reconciled with the somewhat contradictory results of Fig. 1 consider the ICV definition.
The initial conditions defined earlier are formally C0 continuous on a finite domain. Therefore, the lower dissipation
exhibited by methods B and D leads to the errors introduced via the discontinuities in the gradient not being as
damped as in the case of A. Hence, the error grows faster while also showing less dissipation.

VI. Taylor–Green Vortex

VI.A. Effect of Flux Function Order

If the various forms of variable storage are now applied to the full Navier–Stokes equations for a flow with turbulence,
we can investigate in a more practical sense what the effect may be. The flow of choice for this is the canonical
Taylor–Green vortex,26,27 where the exact flow field used is defined in.28–30 This case is chosen as not only is
it a case for the Navier–Stokes equations, but it exhibits transition from an inviscid regime to a fully turbulent
flow, via the mechanism of vortex stretching and shearing. This is key, as not only is it more representative of
real engineering flows, but transition to turbulence will introduce the energy cascade to the flow and hence induce
aliasing. We will go onto use this particular flow throughout this work and therefore some time will be devoted
here to an explanation of its set-up and behaviour.
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The initial condition is taken to be:

u=U0sin

(
x

L

)
cos

(
y

L

)
cos

(
z

L

)
(59a)

v=−U0cos

(
x

L

)
sin

(
y

L

)
cos

(
z

L

)
(59b)

w=0 (59c)

p=p0+
ρ0U

2
0

16

(
cos

(
2x

L

)
+cos

(
2y

L

))(
cos

(
2z

L

)
+2

)
(59d)

ρ=
p

RT0
(59e)

where we define the case by the non-dimensional parameters as:

Re=
ρ0U0L

µ
, Pr=0.71=

µγR

κ(γ−1)
, Ma=

U0√
γRT0

(60)

with the free variables set as:

U0=1, ρ0=1, p0=100, R=1, γ=1.4, L=1 (61)

This is then solved on a domain Ω∈ [−π,π]3 with periodic boundary conditions. Again the initial condition is set
using the nodal values. From the above definitions, varying Re and Ma allow for a series of different flow regimes
to be explored, however first and foremost this case is intended to be incompressible case. Hence, if we will begin
by using a Mach number that is typical in this case, Ma of approximately 0.08. Furthermore, it is known that
for Re>∼500 the turbulence exhibited is isotropic and homogeneous.27

The metrics that we will use to study the behaviour of the numerical method applied to the TGV are the rate
of kinetic energy dissipation and enstrophy dissipation:

ε1=−dEk
dt

=− d

dt

(
1

2ρ0U2
0 |Ω|

∫
Ω

ρV·Vdx

)
(62)

ε2=
µ

ρ20U
2
0 |Ω|

∫
Ω

ρ(ωωω·ωωω)dx (63)

where ωωω is the vector is vorticity, µ is the shear viscosity, and where ε1 & ε2 have been normalised. We will also
make use of the enstrophy error term:

E=
ε2−ε2,ref
ε2,ref

(64)

Flux function order is the primary focus of this work, and, as such, we wish to investigate if the different
methods of variable storage impact the accuracy of the solution. As a result, there are two things which will be
varied, the first of which is the Reynolds number. Three cases are investigated, with Re=400, 1600, and 3000,
with DNS data (ref) available from Brachet et al.27 Variation of the Reynolds numbers over this range will trigger
a variety of different physics in this case, as will be discussed later. The second variable we propose changing is
the Mach number, where values of Ma=0.08 and 0.3 will be tested. The effect of compressibility on the TGV
was investigated by Peng et al.31 at various Mach numbers between 0.5 and 2, with 0.5 not being found to exhibit
shocklets. Therefore, testing at Ma=0.3 will test the introduction of errors due to larger spatial variations in ρ,
but without introducing issues relating to shock capturing.

For the majority of the investigation, a 3D Navier–Stokes FR scheme will be used. The grid topology used
will be hexahedral, constructed using a tensor product of the 1D FR scheme. More details on this construction
of FR can be found in4,21,32 including the extension to diffusion equations. The method of calculating the inviscid
common interface flux chosen is Rusanov flux with Davis wave speeds.33,34 The viscous common interface flux is
found using Bassi and Rebay’s BR1 scheme.35,36 At the present we are not concerned with the associated effects of
correction functions choice and, because of this, an FR correction function that recovers Nodal DG will be used.12,14

Let us first consider the TGV case when Re=1600 at Mach numbers 0.08 and 0.31. We will look to compare
the four methods presented in Section IV for FR with p=4 on a mesh with 803 degrees of freedom, the results
of which are shown in Fig. 3. It is seen that when Ma=0.08, Fig. 3a, there is a small improvement when storing
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(a) Ma=0.08.
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(b) Ma=0.31.

Figure 3: Enstrophy of the Taylor–Green Vortex with Re=1600, p=4 and 803 degrees of freedom for storage
methods A-D.

data as conserved variables over primitive variables. The results of the conservative variables with pressure instead
of energy can be seen to be almost identical to the primitive variable results. It can also be noted that the largest
difference is seen around the time of peak dissipation and not in the region 4<t<7. This seems to indicate that
the effect of changing the method of variable storage is to reduce the dissipation at the smallest scales, as the lower
flux order again increases resolution. It is apparent that it does not introduce extra sources of dispersion which
would cause over dissipation around 4<t<7 when small scales begin to enter the flow.

Moving onto the case when Ma=0.31, the higher Mach number will introduce larger spatial variation in the
density as the flow becomes more compressible. From the analysis in Section IV it is clear that the division by density
with large spatial variations could lead to higher levels of error, predominantly through the truncation mechanism.

The enstrophy for the Ma=0.31 case is shown in Fig. 3b and clearly shows a far larger change between the
full conservative and the primitive methods. Again the cases of primitive and partial conservative with pressure
are similar — this suggests that the improvement is largely originating from the change in the handling of the
energy equation. Clearly the largest difference between the method happens for 8<t<12. From DeBonis et al.,28

we see that around this time energy has moved to the higher frequencies, but the −5/3 power law has not yet
been established. This means that at this time the spatial variation of the variables is large. Therefore, at higher
Mach numbers the error in schemes B and C has two competing components. The reduction due to the use of
the momentum terms in the flux, and a potential increase due to spatial variation in the density.

At the higher Mach number, there is a noticeable difference in Fig. 3b between the fully conservative approaches
with the gradient calculated from the converted primitives, and the gradient calculated from the application of
the product rule. It is hard to attribute this difference to a particular aspect, this will be explored further at lower
Reynolds numbers.

In Section III we showed analytically the dependency of interpolation rounding error on order and that it
increases factorially as the polynomial order is increased. To investigate the effect of order we consider the case
of Re=1600 run at p=3 for the same number of degrees of freedom. The results of this are shown in Fig. 4. By
comparison of Fig. 4a & 4b, we can see that there is still a larger difference between the methods in the high Mach
number case than at low Mach number. However, when comparing Fig. 4 & 3, the difference between methods
is markedly smaller at lower order. This evidence is in agreement with the earlier analytical predictions: as we
move to a higher order, this mechanism of error becomes increasingly important.

We will now explore the effect of increasing the Reynolds numbers for the same grid resolution. In particular,
we choose Re=3000, which was explored with DNS by Brachet et al.27 and with DG by Chapelier et al.29 The
results of the application of p=4 FR with the various methods of storage are presented in Fig. 5. Firstly studying

13 of 21

American Institute of Aeronautics and Astronautics



0 4 8 12 16 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

·10−2

t

ε 2

(a) Ma=0.08.
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Figure 4: Enstrophy of the Taylor–Green Vortex with Re=1600, p=3 and 803 degrees of freedom.
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Figure 5: Enstrophy of the Taylor–Green Vortex with Re=3000, p=4 and 803 degrees of freedom.

the Ma=0.08 case, there is again a noticeable difference between the conservative and primitive enstrophy. This
can be attributed to the decrease in numerical/aliasing based dissipation, due to the absence of over-dissipation
when small scales begin to be generated and the increase in dissipation at the expected peak. This suggests that
the small scales are being preserved for longer thus enabling their increased contribution to physical dissipation.

When the Mach number is increased to Ma=0.31 we initially see a larger difference between the formulations,
followed by the solution diverging. A similar divergence was observed by Chapelier et al.29 when using DG on
an under-resolved mesh, although they were solving the explicitly filtered LES equations. They attributed the
divergence to insufficient numerical dissipation to stabilise the under-resolved grid. From the other results presented
here, it has been shown that storing the conserved variables leads to reduction in dissipation at high wavenumbers
due to the lower order of the flux function. Also, it is well-known that DG, particularly for non-linear problems, will
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require stabilisation through a de-aliasing method.14 This appears to be the problem now confronted by methods
B and C, and mitigations for FR have been investigated by Spiegel et al.37 and for NDG by Hesthaven et al.14

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

·10−2

t

ε 2

(a) Ma=0.08.
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(b) Ma=0.31.

Figure 6: Enstrophy of the Taylor–Green Vortex with Re=400, p=4 and 403 degrees of freedom.

Finally for the storage methods, differences will be compared between methods B and C when applied to a
case with larger magnitude viscous terms. For this we will consider a case at Re=400. Initially a grid with 803

degrees of freedom was used, however this resolution was found to give approximately DNS results. Because of
this there was little to no content in the flow that was effected by truncation of polynomial aliasing and hence
the degrees of freedom was reduced to 403. This give a cell Reynolds number of Re,cell=50 at p=4, which is more
indicative of LES. The results, shown in Fig. 6, indicate only a small change between the methods B and C. Due
to overshoot at both Mach numbers, it is hard to discern if one method is better than another. However, as we
are about to explore, there may be a computation saving of one method over another.

Table 2: Computation time comparison for one full RK44 explicit time step on a 83, p=4, mesh.

Type Computation time (ms) Speed-Up relative to A

A 6.423 1.000

B 5.832 1.101

C 5.634 1.140

D 6.757 0.951

The different methods outlined in Section IV require differing numbers of floating-point operations, as some
conversion steps or different numbers of multiplications are required to build quantities such as the flux terms.
Therefore, we wish to understand what the impact on computational performance is, and to this end we profile
the implementation. The implementation of FR used is an in house FR solver called Forflux, written in Fortran
with CUDA Fortran and cuBLAS — both version 9.1 — for GPU acceleration. The implementation has been
constructed such that all the data required for the FR algorithm is resident in the on-board GPU memory, hence
the CPU plays little to no role in the computation. However, the CPU is required for inter-block communication,
but the current implementation does not have support for MPI and so is only suitable for small cases.

The case profiled is a TGV, p=4, with 83 elements run on a Titan Xp. Using the profiler, pgprof, the runtime
for one complete explicit time step was found and is shown in Table 2.

It is clear that the continual conversion to or from the primitive variables has a noticeable impact on the com-
putational time. In this case, the method that required the fewest number of conversions, method C (conservative
variables using the product rule to calculate the gradient of the primitives), was the fastest. Method C gave a
12.3% reduction in computational time, which, all other things being equal, makes this a reasonable optimisation
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strategy to consider. Method D on the other hand, (conservative variables with E swapped for p), was slower as
there are even more conversions required than in the base primitive method.

VI.B. Effect of Working Precision

Finally, we perform a brief numerical investigation on the impact of varying the working precision of the calculation
when applied to turbulent and transitional flows. For this, we will limit our comparison to methods A and B, as
it has previously been shown that the largest difference was between these two methods. The results of tests are
shown in Fig. 7, where 32-bit floating-point (fp32) and 64-bit floating-point (fp64) precisions were used. Initially,
the preprocessor ran to the same arthritic accuracy as the solver, but inaccuracies caused a loss of preservation,
as such the preprocessor is run in fp64 while the working precision of the solver is varied.
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Figure 7: Enstrophy of the Taylor–Green Vortex with Re=1600, p=4 and 803 degrees of freedom for storage
methods A and B in 32 (fp32) and 64 (fp64) bit precision.

The difference between precisions is made clearer in Fig. 8. It is apparent that the difference is most visible
for t>10. By this time the flow field has transitioned and is dominated by small scale vortex interaction. However,
it is not solely due to high frequencies in the solution that the effect is more pronounced, but also due to the decay.
As time proceeds, the range of solution reduces. For example the absolute velocity range goes from [0,1] to [0,0.52]
from t=0 to t=20. Therefore, as the error in terms like the Jacobian remain constant, the precision error will
have a greater impact when the solution range is smaller.

Figure 8 goes on to show that larger differences due to precision are experienced at lower Mach number. It
is believed that this is because at lower Mach number the scheme is more sensitive to numerical aliasing occurring
in the interpolation. As the Mach number is increased and the physics begins to exhibit non-constant ρ, the small
floating-point errors in variables are more compatible with the physics and hence its effect appears to be lessened.

These results show that low Mach compressible flow are only negligibly affected by working precision when
considering 32 and 64 bit precisions. However, in the calculation of global statistics care must be taken to the
relative error of single precision compared to double. For example single precision has an epsilon of order 10−7

compared to 10−16. This is the largest value where (1±ε)=1 is true. Therefore, in calculating globally averaged
properties care has to be taken as the accumulator can saturate. To mitigate this here, it was sufficient to have
an accumulator over solution points in each cell and then a final accumulator over all cells in the domain.
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(a) Ma=0.08. (b) Ma=0.31.

Figure 8: Enstrophy error of the Taylor–Green Vortex with Re=1600, p=4 and 803 degrees of freedom for storage
methods A and B in 32 (fp32) and 64 (fp64) bit precision.

VII. Conclusions

Through this work, we have sought to challenge two received wisdoms in CFD. The first of these was the use
of primitive variables to construct flux functions. We compared the use of primitives with conserved variables
and showed numerically that a noticeable difference can be seen in methods that use reconstruction. Analysis
using Taylor’s theorem showed that this is primarily due to the flux function order — and as order increases, the
difference found will become increasingly important.

An investigation into the effects of these choices on the method for constructing the viscous flux was also
performed. When reconstructing from the conserved variables there are two potential methods, where either
primitives are used as an intermediary or the product rule is used. Analysis showed a clear difference between the
approaches, however in numerical investigations, these differences were limited due to the typically small magnitude
of the viscous terms.

A final investigation was performed that aimed to challenge the dogma that double precision is important
in CFD calculations. Numerical investigations on transitional flows showed that differences between single and
double precision were negligible. However, differences become more noticeable over long-time integration, which
can be attributed to two things. Firstly, that in single-precision error accumulation will become apparent more
quickly under explicit temporal integration due to the larger relative error. Secondly, in this case, the range of
the variable fields reduces with time due to dissipation, and so as time proceeds the absolute error from early on
will get relatively larger. These points also highlight some key considerations when reducing the precision, due to
the increased relative error of lower precision care has to be taken in accumulation. For example, when calculating
globally averaged statistics or in statistics calculated through many operations.

Acknowledgements

The support of the Engineering and Physical Sciences Research Council of the United Kingdom is gratefully
acknowledged under the award reference 1750012. The authors would also like to thank Nvidia for the GPU
Seeding Grant received.

References

1J. Slotnick, A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie, D. Mavriplis, CFD Vision 2030 Study:
A Path to Revolutionary Computational Aerosciences, Tech. Rep. March, NASA (2014). arXiv:arXiv:1011.1669v3,
doi:10.1017/CBO9781107415324.004.
URL http://ntrs.nasa.gov/search.jsp?R=20140003093

2M. A. Wahab, A Breif History of the ANSIS Package, in: Mechanics of Adhesives in Composite and Metal Joints: Finite

17 of 21

American Institute of Aeronautics and Astronautics

http://ntrs.nasa.gov/search.jsp?R=20140003093
http://ntrs.nasa.gov/search.jsp?R=20140003093
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1017/CBO9781107415324.004
http://ntrs.nasa.gov/search.jsp?R=20140003093


Element Analysis with ANSYS, 1st Edition, DEStech Publications, Lancaster, Pa, 2014, Ch. 3, pp. 59–60.
3G. E. Karniadakis, S. J. Sherwin, Spectral/hp Element Methods for Computational Fluid Dynamics, 1st Edition, Oxford

University Press, Oxford, 2013.
4F. D. Witherden, A. M. Farrington, P. E. Vincent, PyFR: An Open Source Framework for Solving Advection-Diffusion Type

Problems on Streaming Architectures Using the Flux Reconstruction Approach, Computer Physics Communications 185 (11) (2014)
3028–3040. arXiv:1312.1638, doi:10.1016/j.cpc.2014.07.011.
URL http://dx.doi.org/10.1016/j.cpc.2014.07.011

5R. S. Cant, SENGA2 User Guide, Tech. Rep. CUED/ATHERMO/TR67, Universit of Cambridge (2012).
6R. D. Moser, P. Moin, A. Leonard, A Spectral Numerical Method for the Navier–Stokes Equations with Applications to

Taylor–Couette Flow, Journal of Computational Physics 52 (3) (1983) 524–544.
7G. A. Blaisdell, E. T. Spyropoulos, J. H. Qin, The Effect of the Formulation of Nonlinear Terms on Aliasing Errors in Spectral

Methods, Applied Numerical Mathematics 21 (1996) 207–219.
8A. G. Kravchenko, P. Moin, On the Effect of Numerical Errors in Large Eddy Simulations of Turbulent Flows, Journal of

Computational Physics 131 (2) (1997) 310–322. doi:10.1006/jcph.1996.5597.
URL http://linkinghub.elsevier.com/retrieve/pii/S0021999196955977

9A. R. Winters, R. C. Moura, G. Mengaldo, G. J. Gassner, S. Walch, J. Peiro, S. J. Sherwin, A Comparative Study on Polynomial
Dealiasing and Split Form Discontinuous Galerkin Schemes for Under-Resolved Turbulence Computations, Journal of Computational
Physics 372 (2018) 1–21. arXiv:1711.10180, doi:10.1016/j.jcp.2018.06.016.
URL https://doi.org/10.1016/j.jcp.2018.06.016

10H. Homann, J. Dreher, R. Grauer, Impact of the Floating-Point Precision and Interpolation Scheme on the Results of DNS
of Turbulence by Pseudo-Spectral Codes, Computer Physics Communications 177 (2007) 560–565. doi:10.1016/j.cpc.2007.05.019.

11D. H. Bailey, High-Precision Floating-Point Arithmetic in Scientific Computing, Computing in Science and Engineering 7 (3)
(2005) 54–61.

12H. T. Huynh, A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods, in: 18th
AIAA Computational Fluid Dynamics Conference, Vol. 2007-4079, 2007, pp. 1–42. doi:10.2514/6.2007-4079.
URL http://arc.aiaa.org/doi/pdf/10.2514/6.2007-4079

13P. E. Vincent, P. Castonguay, A. Jameson, A New Class of High-Order Energy Stable Flux Reconstruction Schemes, Journal
of Scientific Computing 47 (1) (2010) 50–72. doi:10.1007/s10915-010-9420-z.
URL http://link.springer.com/10.1007/s10915-010-9420-z

14J. S. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, 1st Edition,
Vol. 54 of Texts in Applied Mathematics, Springer New York, New York, NY, 2008. doi:10.1007/978-0-387-72067-8.
URL http://link.springer.com/10.1007/978-0-387-72067-8

15E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics - A Practical Introduction, 3rd Edition, Springer-Verlag
Berlin Heidelberg, Dordrecht Berlin Heidelberg London New York, 2009.
URL http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Riemann+Solvers+and+Numerical+Methods+for+

Fluid+Dynamics{#}1{%}5Cnhttp://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Riemann+solvers+and+

numerical+methods+for+fluid+dynamics.+1999{%}230
16P. E. Vincent, P. Castonguay, A. Jameson, Insights From von Neumann Analysis of High-Order Flux Reconstruction Schemes,

Journal of Computational Physics 230 (22) (2011) 8134–8154. doi:10.1016/j.jcp.2011.07.013.
URL http://dx.doi.org/10.1016/j.jcp.2011.07.013

17W. Trojak, Generalised Sobolev Stable Flux Reconstruction, Arxiv 1804 (04714) (2018) 1–19. arXiv:1804.04714.
URL http://arxiv.org/abs/1804.04714

18W. Trojak, Generalised Lebesgue Stable Flux Reconstruction, Arxiv 1805 (12481v2) (2018) 1–15. arXiv:1805.12481.
URL http://arxiv.org/abs/1805.12481

19W. Trojak, F. D. Witherden, A New Family of Weighted One-Parameter Flux Reconstruction Schemes (2018) 1–
37arXiv:arXiv:1809.07846v1.

20R. Kress, Numerical Analysis, 1st Edition, Vol. 181 of Graduate Texts in Mathematics, Springer New York, New York, NY,
1998. doi:10.1007/978-1-4612-0599-9.
URL http://link.springer.com/10.1007/978-1-4612-0599-9

21P. Castonguay, P. E. Vincent, A. Jameson, Application of High-Order Energy Stable Flux Reconstruction Schemes to the Euler
Equations, 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 686 (January).
doi:10.1007/s10915-011-9505-3.

22P. L. Roe, Is Discontinuous Reconstruction Really a Good Idea?, Journal of Scientific Computing 73 (2-3) (2017) 1094–1114.
doi:10.1007/s10915-017-0555-z.

23R. A. Leslie, How Not to Repeatedly Differentiate a Reciprocal, The American Mathematical Monthly 98 (8) (1991) 732–735.
24C. W. Shu, Essentially Non-oscillatory and Weighted Essentially Non-oscillatory Schemes for Hyperbolic Conservation Laws

Chi-Wang, in: A. Quarteroni, A. Dold, F. Takens, B. Teisser (Eds.), Advanced Numerical Approximation of Non-Linear Hyperbolic
Equations, 1st Edition, Springer-Verlag, Berlin Heidelberg, 1997, Ch. 4, pp. 327–432. doi:10.1007/BFb0096351.

25S. C. Spiegel, H. T. Huynh, J. R. DeBonis, A Survey of the Isentropic Euler Vortex Problem using High-Order Methods, in:
22nd AIAA Computational Fluid Dynamics Conference, no. June, 2015, pp. 1–21. doi:10.2514/6.2015-2444.
URL http://arc.aiaa.org/doi/10.2514/6.2015-2444

26G. I. Taylor, A. E. Green, Mechanism of the Production of Small Eddies from Large Ones, Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences 158 (895) (1937) 499–521. arXiv:arXiv:1205.0516v2, doi:10.1098/rspa.1937.0036.
URL http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.1937.0036

27M. E. Brachet, D. L. Merion, S. A. Orszag, B. G. Nickel, R. H. Morf, U. Frisch, Small-Scale Structure of the Taylor-Green
Vortex, Journal of Fluid Mechanics 130 (1983) 411–452.

18 of 21

American Institute of Aeronautics and Astronautics

http://dx.doi.org/10.1016/j.cpc.2014.07.011
http://dx.doi.org/10.1016/j.cpc.2014.07.011
http://arxiv.org/abs/1312.1638
http://dx.doi.org/10.1016/j.cpc.2014.07.011
http://dx.doi.org/10.1016/j.cpc.2014.07.011
http://linkinghub.elsevier.com/retrieve/pii/S0021999196955977
http://dx.doi.org/10.1006/jcph.1996.5597
http://linkinghub.elsevier.com/retrieve/pii/S0021999196955977
https://doi.org/10.1016/j.jcp.2018.06.016
https://doi.org/10.1016/j.jcp.2018.06.016
http://arxiv.org/abs/1711.10180
http://dx.doi.org/10.1016/j.jcp.2018.06.016
https://doi.org/10.1016/j.jcp.2018.06.016
http://dx.doi.org/10.1016/j.cpc.2007.05.019
http://arc.aiaa.org/doi/pdf/10.2514/6.2007-4079
http://dx.doi.org/10.2514/6.2007-4079
http://arc.aiaa.org/doi/pdf/10.2514/6.2007-4079
http://link.springer.com/10.1007/s10915-010-9420-z
http://dx.doi.org/10.1007/s10915-010-9420-z
http://link.springer.com/10.1007/s10915-010-9420-z
http://link.springer.com/10.1007/978-0-387-72067-8
http://dx.doi.org/10.1007/978-0-387-72067-8
http://link.springer.com/10.1007/978-0-387-72067-8
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Riemann+Solvers+and+Numerical+Methods+for+Fluid+Dynamics{#}1{%}5Cnhttp://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Riemann+solvers+and+numerical+methods+for+fluid+dynamics.+1999{%}230
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Riemann+Solvers+and+Numerical+Methods+for+Fluid+Dynamics{#}1{%}5Cnhttp://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Riemann+solvers+and+numerical+methods+for+fluid+dynamics.+1999{%}230
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Riemann+Solvers+and+Numerical+Methods+for+Fluid+Dynamics{#}1{%}5Cnhttp://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Riemann+solvers+and+numerical+methods+for+fluid+dynamics.+1999{%}230
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Riemann+Solvers+and+Numerical+Methods+for+Fluid+Dynamics{#}1{%}5Cnhttp://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Riemann+solvers+and+numerical+methods+for+fluid+dynamics.+1999{%}230
http://dx.doi.org/10.1016/j.jcp.2011.07.013
http://dx.doi.org/10.1016/j.jcp.2011.07.013
http://dx.doi.org/10.1016/j.jcp.2011.07.013
http://arxiv.org/abs/1804.04714
http://arxiv.org/abs/1804.04714
http://arxiv.org/abs/1804.04714
http://arxiv.org/abs/1805.12481
http://arxiv.org/abs/1805.12481
http://arxiv.org/abs/1805.12481
http://arxiv.org/abs/arXiv:1809.07846v1
http://link.springer.com/10.1007/978-1-4612-0599-9
http://dx.doi.org/10.1007/978-1-4612-0599-9
http://link.springer.com/10.1007/978-1-4612-0599-9
http://dx.doi.org/10.1007/s10915-011-9505-3
http://dx.doi.org/10.1007/s10915-017-0555-z
http://dx.doi.org/10.1007/BFb0096351
http://arc.aiaa.org/doi/10.2514/6.2015-2444
http://dx.doi.org/10.2514/6.2015-2444
http://arc.aiaa.org/doi/10.2514/6.2015-2444
http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.1937.0036
http://arxiv.org/abs/arXiv:1205.0516v2
http://dx.doi.org/10.1098/rspa.1937.0036
http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.1937.0036


28J. R. DeBonis, Solutions of the Taylor-Green Vortex Problem Using High-Resolution Explicit Finite Difference Methods, 51st AIAA
Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (February 2013). doi:10.2514/6.2013-382.
URL http://arc.aiaa.org/doi/10.2514/6.2013-382

29J.-B. Chapelier, M. De La Llave Plata, F. Renac, Inviscid and Viscous Simulations of the Taylor-Green Vortex Flow Using
a Modal Discontinuous Galerkin Approach, in: 42nd AIAA Fluid Dynamics Conference and Exhibit, no. June, 2012, pp. 1–17.
doi:10.2514/6.2012-3073.
URL http://arc.aiaa.org/doi/10.2514/6.2012-3073

30C. W. Shu, W. S. Don, D. Gottlieb, O. Schilling, L. Jameson, Numerical Convergence Study of Nearly Incompressible, Inviscid
Taylor-Green Vortex Flow, Journal of Scientific Computing 24 (1) (2005) 569–595. doi:10.1007/s10915-004-5407-y.

31N. Peng, Y. Yang, Effects of the Mach Number on the Evolution of Vortex-Surface Fields in Compressible Taylor-Green Flows,
Physical Review Fluids 3 (1) (2018) 1–21. doi:10.1103/PhysRevFluids.3.013401.

32D. M. Williams, A. Jameson, Energy Stable Flux Reconstruction Schemes for Advection-Diffusion Problems on Tetrahedra,
Journal of Scientific Computing 59 (3) (2014) 721–759. doi:10.1007/s10915-013-9780-2.
URL http://dx.doi.org/10.1016/j.jcp.2013.05.007

33V. Rusanov, The Calculation of the Interaction of Non-Stationary Shock Waves with Barriers, Zh. Vychisl. Mat. Mat. Fiz.
1 (2) (1961) 267–279. arXiv:arXiv:1011.1669v3, doi:10.18287/0134-2452-2015-39-4-453-458.

34S. Davis, Simplified Second-order Godunov-type Methods, SIAM Journal on Scientific and Statistical Computing 9 (3) (1988)
445–473.

35F. Bassi, S. Rebay, A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible
NavierStokes Equations, Journal of Computational Physics 131 (2) (1997) 267–279. doi:10.1006/jcph.1996.5572.
URL http://linkinghub.elsevier.com/retrieve/pii/S0021999196955722

36F. Bassi, S. Rebay, An Implicit High-Order Discountinuous Galerkin Method for the Steady State Compressible Navier-Stokes
Equations, in: Computational Fluid Dynamics ’98, John Wilery & Sons Ltd., Athens,Greece, 1998, pp. 1226–1233.

37S. C. Spiegel, H. T. Huynh, J. R. DeBonis, De-Aliasing through Over-Integration Applied to the Flux Reconstruction and
Discontinuous Galerkin Methods, in: 22nd AIAA Computational Fluid Dynamics Conference, AIAA AVIATION Forum, (AIAA
2015-2744), Dallas (TX), 2015, pp. 1–22. doi:10.2514/6.2015-2744.

19 of 21

American Institute of Aeronautics and Astronautics

http://arc.aiaa.org/doi/10.2514/6.2013-382
http://dx.doi.org/10.2514/6.2013-382
http://arc.aiaa.org/doi/10.2514/6.2013-382
http://arc.aiaa.org/doi/10.2514/6.2012-3073
http://arc.aiaa.org/doi/10.2514/6.2012-3073
http://dx.doi.org/10.2514/6.2012-3073
http://arc.aiaa.org/doi/10.2514/6.2012-3073
http://dx.doi.org/10.1007/s10915-004-5407-y
http://dx.doi.org/10.1103/PhysRevFluids.3.013401
http://dx.doi.org/10.1016/j.jcp.2013.05.007
http://dx.doi.org/10.1007/s10915-013-9780-2
http://dx.doi.org/10.1016/j.jcp.2013.05.007
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.18287/0134-2452-2015-39-4-453-458.
http://linkinghub.elsevier.com/retrieve/pii/S0021999196955722
http://linkinghub.elsevier.com/retrieve/pii/S0021999196955722
http://dx.doi.org/10.1006/jcph.1996.5572
http://linkinghub.elsevier.com/retrieve/pii/S0021999196955722
http://dx.doi.org/10.2514/6.2015-2744


A. Nomenclature

Roman
A scheme storing Qp and ∇Qp

B scheme storing Qc and ∇Qp

C scheme storing Qc and ∇Qc

D scheme storing Qc+p and ∇Qp

ea aliasing error term
Ek volume averaged kinetic energy
f inv,... inviscid flux vector in x,...
fvis,... viscous flux vector in x,...
hL & hR left and right correction function
li ith Lagrange basis polynomial
Ma Mach number
Pr Prandlt number
qp non-normalised pth order Lagrange basis
qip non-normalised p−1th order Lagrange basis formed from qp excluding ith term
Qc conserved variables
Qc+p conserved variables with E exchanged for p
Qp primitive variables
∇Qc gradient of conserved variables
∇Qp gradient of primitive variables
Re Reynolds number
T temperature
∇T gradient of temperature
V vector of velocity components

Greek
β Icentropic Convecting Vortex spread rate

Γn(x) projection operator from real to reference domain, Γn :Ωn 7→Ω̂
ε1 global averaged kinetic energy based dissipation, −dEk/dt
ε2 global enstrophy based dissipation
µ dynamic viscosity
ξ spatial variable in reference domain
τxx,... viscous stress tensor
ψi ith order Legendre polynomial of the first kind
ωωω vorticity, ∇×V
Ω spatial domain
Ωn nth spatial sub-domain

Ω̂ reference domain

Superscript
•δ approximation of variable in sub-domain
•δC correction to approximation of variable in sub-domain
•δD discontinuous approximation of variable in sub-domain
•δI common interface values based on approximation of variable in sub-domain
•̂ variable transformed into reference domain
•̃ variable transformed into polynomial space
•(n) nth derivative of variable

Subscript
•L variable at left interface
•R variable at right interface
•x differentiation of variable with respect to x
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Other Symbols
Ln nth order interpolation operator
N set of natural numbers, i.e positive non-zero integers
O big O notation of leading order in limiting behaviour
R set of real numbers
Rn nth order interpolation remainder operator, i.e. f−Lnf
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