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Blade envelopes offer a set of data-driven tolerance
guidelines for manufactured components based on aerodynamic
analysis. In Part I of this two-part paper, a workflow for the
formulation of blade envelopes is described and demonstrated.
In Part II, this workflow is extended to accommodate multiple
objectives. This allows engineers to prescribe manufacturing
guidelines that take into account multiple performance criteria.

The quality of a manufactured blade can be correlated with
features derived from the distribution of primal flow quantities
over the surface. We show that these distributions can be ac-
counted for in the blade envelope using vector-valued models
derived from discrete surface flow measurements. Our methods
result in a set of variables that allows flexible and independent
control over multiple flow characteristics and performance met-
rics, similar in spirit to inverse design methods. The augmenta-
tions to the blade envelope workflow presented in this paper are
demonstrated on the LS89 turbine blade, focusing on the control
of loss, mass flow and the isentropic Mach number distribution.
Finally, we demonstrate how blade envelopes can be used to visu-
alize invariant designs by producing a 3D render of the envelope
using 3D modelling software.

1 INTRODUCTION
In the first part of this two-part paper [1], we defined the

concept of a blade envelope, a visual and computational guideline
yielding automatic scrap-or-use decisions for manufactured turbo-
machinery components. Using the theory of inactive subspaces, a
range of geometric designs that are invariant in loss is identified,
and geometries from this invariant region can be generated with
no additional computational fluid dynamics (CFD) solves. From
this, the decision to scrap or keep a measured component reduces
down to the computation of the Mahalanobis distance from an
aerodynamic knowledge base consisting of invariant designs.

In this second part, we extend blade envelopes beyond the
manufacturing stage of production, and describe how they can
be used during the design stage as well. During the shape design
of a highly-loaded turbine stage, the minimization of loss is often
accompanied with constraints to avoid trivial solutions where

∗Address all correspondence to Chun Yui Wong, cyw28@cam.ac.uk

the blade is unloaded. For example, in [2], the exit flow angle
is constrained to be above the baseline value to ensure sufficient
work extraction. In [3], the authors put an equality constraint on
the mass flow rate while optimizing the loss coefficient to factor
out possible reduction in entropy generation due to reduction
in flow capacity. Prior work [4,5] has leveraged active subspaces
to construct 2D performance maps for compressor blade design.
In the latter work, multiple objectives including the pressure
ratio and flow capacity are considered by mapping contours of
different objectives onto the active subspace of efficiency. Man-
ufacturing deviations are modeled as constant excursions from
the nominal design. The main drawback of this approach is the
requirement to run further simulations to map out performance
contours in the active subspace. In this work, we incorporate
multiple aerodynamic design requirements by interpreting them
as additional constraints factored into blade envelopes.

In situations where tighter control over the performance
of the component is required, constraints on surface flow
characteristics can be implemented. Clark [6] establishes the cor-
relation between aerodynamic features—defined via parts of the
surface isentropic Mach number distribution—and aerodynamic
performance. Control over these key features can be achieved
by factoring the isentropic Mach number distribution as an addi-
tional vector-valued objective in blade envelopes. This approach
is similar in spirit to inverse design, where a target distribution
is specified on the surface of a blade, and the blade shape is iter-
atively modified to give a geometry that matches the distribution.
While inverse design yields an optimal geometry that fits the
design criterion over the entire surface, our approach aims to find
designs that satisfy the target distribution in parts of the flow that
are most critical to performance. The relaxation of constraints on
other locations allows a range of designs to be specified, whose
expanse is explicitly quantified by the blade envelope. Moreover,
we can combine the control over the surface flow profile with
constraints over other scalar objectives to perform inverse design
constrained by requirements on other measures of performance.

In addition to computationally quantifying the region of a
high-dimensional design space corresponding to designs with
invariant objective values, blade envelopes are also amenable to
intuitive visualizations. We conclude this work by connecting the
numerical output of the blade envelopes workflow to 3D mod-
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Fig. 1. A CAD representation of the controlled loss and mass flow
rate blade envelope.

elling software, producing outputs such as Figure 1. The result is
a visualization of the possible designs within the blade envelope
that can be easily shared between engineers and made interactive
via novel technologies such as 3D printing and augmented reality.

2 COMPUTATIONAL METHODOLOGIES
Blade envelopes demarcate boundaries between regions

within the space of manufactured geometries which exhibit
similar performance metrics. These envelopes are formed from
statistics derived from an aerodynamic database containing
geometries sampled from the inactive subspace with respect to a
scalar objective. Building upon this framework, we describe two
algorithms to identify regions of the design space characterized
by invariance in multiple objectives, including both scalar- and
vector-valued objectives. This enables us to obtain samples
invariant in these objectives to form the required database for
a multi-objective blade envelope.

Recall from [1] the partitioning of the design space into
the active and inactive subspaces via an orthogonal matrix
QQQ=

[
WWW VVV

]
,

x=WWWWWWT x+VVVVVVT x, (1)

where we desire that the quantity of interest varies predom-
inantly with changes in the active coordinates WWWT x, and
are approximately invariant with respect to changes in the
inactive coordinates VVVT x. Building on this idea of subspace
decomposition, we aim to identify an inactive subspace matrix
VVV whose columns form a basis for a subspace within which
multiple objectives are approximately invariant.

2.1 Intersection of inactive subspaces
Consider two independent objectives f1(x) and f2(x)

depending on the design variables x differently. Assuming
each objective is differentiable, we can compute the following
symmetric positive semi-definite matrices,

CCCi=

ˆ
X

∇x fi(x)∇x fi(x)T
τ dx, i=1, 2 (2)

where τ = 2−d defines a uniform distribution over the design
space, which is a d-dimensional hypercube [−1,1]d as before.
Their respective eigenvalue decompositions can be evaluated,

CCCi=[WWW i VVV i]

[
ΛΛΛi,1 0

0 ΛΛΛi,2

][
WWWT

i
VVVT

i

]
, i=1, 2, (3)

where the non-negative eigenvalues are ordered in descending
order, and the diagonal terms in Λi,2 are sufficiently close to zero,
for i = 1,2. From (3), the inactive subspace corresponding to
fi(x), i.e., the column span of VVV i, can be obtained. Let’s denote
this by Vi=colspan(VVV i). The idea is to find the intersection of
the inactive subspaces Vint =V1∩V2. If a design perturbation
lies within Vint , then by definition it lies in both V1 and V2,
implying that such a perturbation has insignificant effects on
both f1(x) and f2(x). How do we find this intersection, and how
can we sample from it?

It can be shown that Vint is a linear subspace that can be
expressed as the column span of a basis matrix (see [7, p. 64]).
Let this matrix be VVV int . Once we can evaluate VVV int , the
exploration of the subspace Vint subject to constraints reduces to
an application of the hit-and-run sampling algorithm as described
in Part I [1]. To find this matrix, we require the active subspace
basis matrices WWW1∈Rd×r1 and WWW2∈Rd×r2 , and the assumption
that the dimension r of the space colspan(WWW1)⊕colspan(WWW2)
is less than d, the ambient design space dimension, where ⊕
denotes the direct sum. With these assumptions, the following
recipe can be used to find VVV int:

1. Form WWWboth :=[WWW1 WWW2].
2. Decompose WWWboth by QR-factorization, WWWboth=QQQRRR.
3. Set VVV int to be the last d−r columns of QQQ.

This gives us the basis matrix VVV int corresponding to the
inactive subspace for both f1(x) and f2(x). This procedure is
straightforwardly generalizable to n>2 objectives via induction,
as long as the dimension r of the direct sum of the active
subspaces is strictly less than d.

2.2 Vector-valued objectives
Given the method of intersections, a natural extension to

find an invariant subspace for a vector-valued objective would
be to treat the N components of the objective

M(x)=[M1(x), M2(x), ..., MN(x)]
=[M1, M2, ..., MN]

(4)
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as independent scalar objectives, and find the intersection of all
their respective inactive subspaces Vint =V1∩V2∩...∩VN. The
challenge with this approach for large N (when compared to d)
is the fact that the total number of active coordinates is likely
to exceed d. In this situation, the intersection of the inactive
subspaces is trivial, i.e., it contains only the zero vector. An
alternative approach that provides approximate invariance across
the component objectives is required.

We take cues from the work of Wong et al. [8] and Zahm et
al. [9] and define the following multivariate generalisation of (2),

HHH=

ˆ
X

JJJ(x) RRR JJJ(x)T
τ dx, (5)

where

JJJ(x)=
[

∂M1

∂x
, ... ,

∂MN

∂x

]
∈Rd×N (6)

is the Jacobian matrix. The matrix RRR is a user-defined N×N
diagonal weight matrix,

RRR=


ω1

ω2
. . .

ωN

, (7)

where ωi ≥ 0 for 1 ≤ i ≤ N. The corresponding active and
inactive subspace basis matrices WWWM and VVVM for M can be
found again via the eigenvalue decomposition,

HHH=[WWWM VVVM]

[
ΛΛΛM,1 0

0 ΛΛΛM,2

][
WWWT

M
VVVT

M

]
, (8)

with WWWM ∈Rd×r and VVVM ∈Rd×(d−r). The dimensionality r is
found by identifying the largest eigenvalue gap, as in the scalar
case. In [9], the focus is placed on finding the active subspace
for vector-valued objectives to achieve dimension reduction.
Here, we place the emphasis on the inactive subspace instead, to
achieve component-wise invariance in vector-valued quantities.

The power of this method lies in the flexibility in setting
the weight matrix RRR. It can be shown that HHH is the weighted
sum of the gradient covariance matrices corresponding to each
component objective [9, Sec. 5.2.2]. That is, if

CCCi=

ˆ
X

∇xMi(x)∇xMi(x)T
τ dx, (9)

then

HHH=
N

∑
i=1

ωiCCCi. (10)

The larger the weight for ωi, the bigger its influence on the
eigenvectors WWWM and VVVM. Samples from the inactive subspace
yield output values that are close to nominal at locations with
a large prescribed weight; in locations with a smaller weight,
output values are allowed to vary more freely. The weights
allow us to prescribe different degrees of invariance to various
locations indexed by the vector-valued objective.

2.3 Discussion: Distinguishing between inactive subspaces
The problem of finding an orthonormal basis for the

intersection of multiple inactive subspaces is equivalent to
finding the null space of their direct sum (see 6.4.2 in [7]). In
other words, there is a connection between the inactive subspace
of HHH from (10), and last few columns of QQQ in Section 2.1.

Consider the inactive subspace to be the orthogonal
complement of the column span of HHH, which would correspond
to the eigenvectors of HHH that have eigenvalues of zero. In
practice, however, if we have many independent objectives, there
is a strong possibility that the span of HHH will have full dimension,
in which case the inactive subspace will be trivial, i.e., {000}.
For practical reasons, this motivates us to consider a relaxed
definition of the inactive subspace, which corresponds to the
linear span of small eigenvalues of HHH. The threshold between
small and not-small is problem specific, although one can make
various scaling arguments about what a reasonable threshold
would be. In this setting, the inactive subspace will depend
strongly on the choice of the scaling parameters RRR, which can
weight the relative importance of difference subspaces.

Utilizing the direct intersection approach in Section 2.1
implies that the inactive subspaces of the various objectives
are characterized by eigenvalues that are all exactly zero (albeit
with a different formulation of the active subspace). We can
interpret this as a strongly inactive subspace, and it will be
used when considering multiple flow quantities. In contrast,
the inactive subspace obtained through HHH represents a weakly
inactive subspace, and is used in this paper for studying a single
vector-valued quantity, e.g., isentropic Mach number distribution.

2.4 Constrained tuning via active coordinates
Assuming that the active subspaces are linearly

independent—a mild assumption for independent objectives,
using the method of intersection of n scalar- or vector-valued
objectives, we obtain a linear decomposition of the design space.
This decomposition can be characterised by gathering the active
subspace basis matrices together with the intersection of the
inactive subspaces,

DDD=
[
WWW1 WWW2 ... WWWn VVV

]
, (11)

yielding a square matrix DDD∈Rd×d with independent columns.
Corresponding to DDD, a coordinate transformation on the design
x yields the following

DDDT x=
[(

WWWT
1 x
)T (WWWT

2 x
)T

...
(
WWWT

n x
)T (VVVT x

)T
]T

=
[
uT

1 uT
2 ... uT

n︸ ︷︷ ︸
r1+r2+...+rn

zT
]T (12)
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The first components of the new coordinates u1, u2, ..., un
correspond to the active coordinates of the objectives f1, f2,..., fn;
the final coordinates z correspond to the inactive coordinates.
Any perturbation lying in the column space of VVV has its first
r1+r2+...+rn coordinates equal to zero, implying that it causes
no change to the active coordinates for all objectives. Thus, this
perturbation does not cause significant change to any objective.

Assuming that each coordinate is independent, the active
coordinates can also be treated as tunable parameters that directly
control each objective separately. Adjusting the values of u1
while keeping every other active coordinate constant results in
changes in f1, while maintaining the values of other objectives.
Note that we can allow the inactive coordinates z to float, since
those coordinates do not affect any objective.

3 AUGMENTING THE BLADE ENVELOPE FOR LS89
In the following, we apply the methods described above

to extend the blade envelope for the LS89 turbine profile to
accommodate a constraint on the mass flow function. Next, the
method of conditional tuning is demonstrated by identifying
geometries with constant loss and mass flow coefficients by their
isentropic Mach number distributions.

3.1 Inactive subspace for loss and mass flow
Recall from Equation (2) in Part I [1] the definition of the

mass flow function

fm=
ṁ
√

T01

p01
×104. (13)

Following a similar approach to the calculation of the inactive
subspace for loss, we first model the mass flow function using
an orthogonal polynomial series via regression on a data-set
consisting of M = 800 training samples and 200 validation
samples. These are drawn from a 20D design space based on
free-form deformation—the same data-set used in part I. In this
case, it is found that a linear polynomial (p=1) suffices to yield
an R2 value of 0.993 on the validation data (see Figure 2). Now,
we could compute the associated gradient covariance matrix
(2) by sampling gradient evaluations, but since the model is
linear, the gradient is constant across the input domain. This
implies that we can read off the 1D active subspace as the linear
polynomial coefficients to the design parameters, i.e.,

fm ≈ u fm =WWWT
fmx, (14)

where WWW fm∈R20×1 specifies the active subspace, and u fm is the
active coordinate for fm.

Equipped with the active subspaces for both loss (WWWYp ∈
R20×1) and mass flow (WWW fm ∈R20×1), we can now find the in-
tersection of their inactive subspaces via the method described in
Section 2.1. The active subspaces are linearly independent and the
intersection Vint is 20−(1+1)=18-dimensional. Then, using
the hit-and-run sampling strategy described in Part I, H=5000

Fig. 2. Validation of polynomial model for the mass flow function.
This coincides with the sufficient summary plot because the global
polynomial approximation is a linear model.

Fig. 3. Loss and mass flow function for random training designs
(blue) and invariant designs within the intersection of the inactive sub-
spaces (yellow).

samples are generated from Vint . The invariance in both objec-
tives is verified by picking 500 designs and running them through
the CFD solver to obtain their true loss and mass flow function
values, which we plot against the corresponding values for the
training data-set in Figure 3. This confirms that the designs in
the intersection are approximately invariant in both objectives.

The blade envelope for invariance in loss and mass flow is
shown in Figure 4. Compared to the blade envelope for loss in
Part I, the control zone in this case is narrower from mid-chord
to the trailing edge. The typical curvature of the sample profiles
is also milder. Using the sample profiles, the ensemble mean
and covariance matrix can be calculated and the Mahalanobis
distance can be computed for test profiles, as in Section 3.4 of
Part I [1]. Figure 5 shows the application of a trained logistic
function on profiles from two different design spaces—the 20D
design space from which the training data is drawn, and the 30D
design space described in Section 4.4 of Part I [1]. The samples
from the 30D space are colored according to how close their loss
and mass flow values are to nominal values calculated according
to the following formula

δ(x)=
√(

y(x)−µµµy
)T SSS−1

y
(
y(x)−µµµy

)
, (15)

where y(x)= [Yp(x), fm(x)]T , and µµµy and SSSy are the ensemble
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Fig. 4. The blade envelope for loss and mass flow.

mean and covariance matrix of y over all training designs
respectively. Note that δ(x) is another Mahalanobis distance, this
time defined over the two output objectives. This is analogous
to that defined over geometric profiles (see Section 3.4 of Part
I [1]). Here, we see similar results as those obtained for a single
objective in Sections 4.3 and 4.4 of Part I [1], showing that the
Mahalanobis distance defined over geometries is an effective
diagnostic for identifying profiles invariant in multiple objectives.

3.2 Setting the peak isentropic Mach number
In addition to control over the total quantity of loss, the

distribution of this loss is also of interest to the engineer as
a means to judge the quality of a component. The invariant
subspace of loss and mass flow contains geometries that yield
different flow profiles, resulting in a range of loss distributions,
some preferred over others. According to Clark [6], surface flow
characteristics defined by primal flow quantities can be used as
predictors of aerodynamic performance, differentiating between
desirable and undesirable flow profiles. In his work, four features
of the surface isentropic Mach number distribution are isolated:

1. the peak isentropic Mach number,
2. the surface fraction of the peak isentropic Mach number,
3. the leading edge isentropic Mach number, and
4. the pressure side isentropic Mach number prior to

acceleration.

In this section, the method of vector-valued dimension reduction
is applied to modulate the peak of this distribution. The isentropic
Mach number is defined in Equation (3) in Part I [1] as

M(s)=

√√√√√ 2
γ−1

( p01

p(s)

) γ−1
γ

−1

, (16)

where s indicates the location on the surface. This can be
discretized as in (4) into M(x).

(a)

(b)

Fig. 5. Trained logistic function for applying a binary scrap-or-use
decision on profiles, requiring invariance in both the loss and mass
flow function; (a) shows samples from the 20D design space and
(b) shows samples from the 30D design space described in Section
4.4 of Part I [1]. In (b), the samples are colored according to their
deviation from nominal loss and mass flow, quantified via (15).

Our goal is to extract a small number of active coordinates
which capture the variation of the peak isentropic Mach number.
Following the recipe in Section 2.2, the gradient covariance
matrix for the isentropic Mach number distribution HHHpeak is
required, where the weight matrix RRRpeak is set such that diagonal
elements corresponding to the peak are large. This is illustrated
in Step I in Figure 6, where the color indicates the magnitude of
the corresponding weights. To compute the necessary gradients
with respect to each nodal isentropic Mach number, quadratic
models are trained at each node using uniformly sampled designs
from the full design space. When evaluated on independent
validation data, the models on nodes with non-zero weights all
achieved an R2 value above 0.99. Note that we set a non-zero
weight on multiple nodes in the vicinity of the peak. As we
change the height of the peak, it is observed that the chord-wise
location of the peak shifts slightly. This effect is accommodated
by smoothing out the weights to a small region near the peak.
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Fig. 6. Conditional tuning of the peak isentropic Mach number.

Carrying out the eigendecomposition of HHHpeak,

HHHpeak=[WWW peak VVV peak]

[
ΛΛΛpeak,1 0

0 ΛΛΛpeak,2

][
WWWT

peak
VVVT

peak

]
. (17)

The eigenvalues of HHHpeak are shown in Figure 7. The active
coordinates can be defined using the first two eigenvectors for ap-

proximate control over the peak isentropic Mach number, namely,

upeak=
[
upeak,1 upeak,2

]T
=WWWT

peakx.
(18)

This set of active coordinates can be combined with those
corresponding to the loss coefficient and mass flow to form the

6 Copyright © 2020 by Rolls Royce plc.
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Fig. 7. Eigenvalues of HHHpeak, weighted for the peak isentropic Mach
number.

following vector

u=
[
uloss u fm upeak,1 upeak,2

]T (19)

To control the peak isentropic Mach number while keeping
the loss and mass flow constant, the procedure described in
Section 2.4 can be used. In this example, we only tune the
first active coordinate upeak,1 for illustrative purposes. The
effect of changing this variable is shown in Step II in Figure 6.
Increasing upeak,1 results in the flattening of the isentropic Mach
number distribution. The location of the peak moves gradually
towards the trailing edge. If the coordinate is increased further,
the peak shifts to the junction at the start of the plateau near
mid-chord. The uncertainty bands around the distributions
indicate the variation in the isentropic Mach number distribution
for geometries with the same values of u.

After setting appropriate values for the active coordinates,
the hit-and-run sampling algorithm introduced in Part I can
be used to sample designs with these coordinates. A blade
envelope can be formed from these samples, following the same
procedure as the previous examples. Step III in Figure 6 shows
the blade envelope with u = 0. Compared with the previous
blade envelopes, the tolerance on the profile from mid-chord
to the trailing edge is reduced, especially on the suction side.
Using the sample profiles, the tolerance covariance matrix and
ensemble mean can be calculated as in Part I to arrive at an
automatic decision criterion for the scrapping of manufactured
blades, taking into account all three objectives.

3.3 Setting the leading edge isentropic Mach number
The procedure can be repeated for a different setting of the

weights on the isentropic Mach number distribution. Setting
the weights as in Step I of Figure 8, the focus is now placed on
the isentropic Mach number near the leading edge. Carrying out
the eigendecomposition of the vector gradient covariance matrix

HHHLE ,

HHHLE =[WWWLE VVVLE]

[
ΛΛΛLE,1 0

0 ΛΛΛLE,2

][
WWWT

LE
VVVT

LE

]
, (20)

the spectrum shown in Figure 9 is obtained. Choosing the first
four eigenvectors as the basis for the active subspace WWWLE , the
active coordinates are specified as

uLE =
[
uLE,1 uLE,2 uLE,3 uLE,4

]T
=WWWT

LEx.
(21)

Concatenating this set of coordinates with the active coordinates
of the loss and mass flow, we get

u=
[
uloss u fm uLE,1 uLE,2 uLE,3 uLE,4

]T
. (22)

The effect of tuning the first active coordinate of the leading edge
isentropic Mach number uLE,1 is shown in Step II of Figure 8.
As the coordinate is increased, the isentropic Mach number
is reduced towards the leading edge, and the acceleration is
milder and more distributed towards mid-chord. Step III shows
the blade envelope obtained with samples setting u = 0. The
geometric tolerance near the leading edge is tightened, especially
on the suction side.

4 PRACTICAL UTILITY AND DISSEMINATION
Thus far in this two-part paper, we have enumerated the

core computational techniques required for generating a blade
envelope under multiple constraints. We have articulated its
utility in design (both forward and inverse) by identifying and
exploiting the inactive subspace. Although all our efforts have fo-
cused on the LS89, the concept of a blade envelope extends well
beyond any given airfoil, and indeed an isolated 2D cross-section.
We envision blade envelopes forming a critical part of the design
stage, facilitating discussions on trade-offs and tolerances.

Beyond design, a key contribution of our work is a machine
learning technique for deciding whether a manufactured blade’s
tolerance variations are permissible or not. This program can be
easily incorporated within an existing coordinate measuring ma-
chine protocol and used in manufacturing assembly lines, with the
aim of moving away from existing broad spectrum tolerances and
opting for a more bespoke, design-centric one, which may offer
opportunities for relaxing tolerances—thereby reducing manu-
facturing costs. Additionally, we see tremendous utility of the
blade envelope in health monitoring; a topic we address in detail
in a forthcoming paper. When inspecting blades that have gone
through several hundred hours of operation, using either detailed
GOM scans or borescope images, we can use the blade envelope
to query whether a given blade needs to be refurbished or not.

The one high-level challenge that remains is how, in practice,
the design, manufacturing and health monitoring teams cohe-
sively converge and take advantage of a blade envelope, given

7 Copyright © 2020 by Rolls Royce plc.



Fig. 8. Conditional tuning of the leading edge isentropic Mach number.

that these teams are seldom collocated and may even be in dif-
ferent continents. To address this, we offer a simple plug-in from
Effective Quadratures (used for doing the computational heavy
lifting) [10] to a 3D modelling software package (we opt for
Blender [11] given its open source nature). The latter can be easily
adapted to industrial computer aided design (CAD) workflows.

We present a CAD representation of the controlled loss and
mass flow rate blade envelope, shown in Figure 1, in the Intro-

duction. The purple and green airfoils correspond to profiles with
negative and positive leading edge displacement respectively, just
as plotted before, but now superimposed with the nominal blade
(shown in black). Our objective in showing these images is to
demonstrate how these envelopes, once frozen for the objectives
desired, can be 3D printed—either at scale or as a scaled-up
model—and can sit on the desktops of designers, manufacturing
engineers, and engine maintenance inspectors (Figure 10). These

8 Copyright © 2020 by Rolls Royce plc.



Fig. 9. Eigenvalues of HHHLE , weighted for the leading edge isen-
tropic Mach number.

Fig. 10. The blade envelope from Figure 1 can be suitably scaled
for 3D printing and placed on desktops.

models can easily be transported, or indeed printed at different
sites, and used to foster discussions on design and tolerance
decisions. For completeness, close-up and isometric views of
this blade envelope are shown in Figures 11 and 12.

5 CONCLUSIONS
This paper extends the blade envelope framework to

accommodate multiple objectives. These objectives can either
be scalar-valued or a distribution defined on a surface. To take
multiple objectives into consideration, an approach based on the
intersection of inactive subspaces is described. For profile ob-
jectives, we propose a method based on vector-valued dimension
reduction to seek an inactive subspace based on weights placed on
different parts of the profile. Combining the inactive subspaces of
the loss coefficient, mass flow function and the surface isentropic
Mach number distribution, we demonstrated use of these
methods to derive a blade envelope that delineates a boundary for
designs that satisfy the constraints placed on all three objectives.

The collection of active coordinates corresponding to
multiple objectives provide independent control over multiple
objectives, by changing the active coordinates of one objective
and keeping others constant. This is demonstrated through tuning
the peak and leading edge isentropic Mach numbers within the
inactive subspace of the loss and mass flow.
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Fig. 11. An isometric view of the blade envelope in Figure 1.

Fig. 12. Close-up of the leading edge of the blade envelope in Figure 1. The demarcated iso-contour lines denote displacements at 5, 10
and 15 mm away from the nominal blade.
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